MIT Libraries home DSpace@MIT
- DSpace@MIT Home
- MIT Libraries
- Graduate Theses

Additive manufacturing (3 D printing) : challenges and opportunities for large scale adoption

Alternative title
Other contributors, terms of use, description, date issued, collections.

- < Previous
UKnowledge > College of Engineering > Mechanical Engineering > Theses & Dissertations > 144
Theses and Dissertations--Mechanical Engineering
DESIGN AND PROCESS OF 3D-PRINTED PARTS USING COMPOSITE THEORY
Jordan Garcia , University of Kentucky Follow
Author ORCID Identifier
https://orcid.org/0000-0002-5328-4882
Date Available
Year of publication, degree name.
Master of Science in Mechanical Engineering (MSME)
Document Type
Master's Thesis
Engineering
Department/School/Program
Mechanical Engineering

First Advisor
Dr. Y. Charles Lu
3D printing is a revolutionary manufacturing method that allows the productions of engineering parts almost directly from modeling software on a computer. With 3D printing technology, future manufacturing could become vastly efficient. However, it is observed that the procedures used in 3D printing differ substantially among the printers and from those used in conventional manufacturing. In this thesis, the mechanical properties of engineering products fabricated by 3D printing were comprehensively evaluated and then compared with those made by conventional manufacturing. Three open-source 3D printers, i.e., the Flash Forge Dreamer, the Tevo Tornado, and the Prusa, were used to fabricate the identical parts out of the same material (acrylonitrile butadiene styrene). The parts were printed at various positions on the printer platforms and then tested in bending. Results indicate that there exist substantial differences in mechanical responses among the parts by different 3D printers. Specimens from the Prusa printer exhibit the best elastic properties while specimens from the Flash Forge printer exhibit the greatest post-yield responses. There further exist noticeable variations in mechanical properties among the parts that were fabricated by the same printer. Depending on the positions that the parts were placed on a printer platform, the properties of resultant parts can vary greatly. For comparison, identical parts were fabricated using a conventional manufacturing method, i.e., compression molding. Results show that compression molded parts exhibit more robust and more homogeneous properties than those from 3D printing. During 3D printing, the machine code (e.g., the Gcode) would provide the processing instructions (the x, y, and z coordinates and the linear movements) to the printer head to construct the physical parts. Often times the default processing instructions used by commercial 3D printers may not yield the optimal mechanical properties of the parts. In the second part of this thesis, the orientation-dependent properties of 3D printed parts were examined. The multi-layered composite theory was used to design the directions of printing so that the properties of 3D printed objects can be optimized. Such method can potentially be used to design and optimize the 3D printing of complex engineering products. In the last part of this thesis, the printing process of an actual automobile A-pillar structure was designed and optimized. The finite element software (ANSYS) was used to design and optimize the filament orientations of the A-pillar. Actual parts from the proposed designs were fabricated using 3D printer and then tested. Consistent results have been observed between computational designs and experimental testing. It is recommended that the filament orientations in 3D-printing be “designed” or “tailored” by using laminate composite theory. The method would allow 3D printers to produce parts with optimal microstructure and mechanical properties to better satisfy the specific needs.
Digital Object Identifier (DOI)
https://doi.org/10.13023/etd.2019.418
Recommended Citation
Garcia, Jordan, "DESIGN AND PROCESS OF 3D-PRINTED PARTS USING COMPOSITE THEORY" (2019). Theses and Dissertations--Mechanical Engineering . 144. https://uknowledge.uky.edu/me_etds/144
Since November 05, 2019
Included in
Computer-Aided Engineering and Design Commons , Manufacturing Commons , Polymer and Organic Materials Commons
Advanced Search
- Notify me via email or RSS
Browse by Author
- Collections
- Disciplines
Author Corner
- Submit Research
New Title Here
Below. --> connect.
- Law Library
- Special Collections
- Copyright Resource Center
- Graduate School
- Scholars@UK

- We’d like your feedback
Home | About | FAQ | My Account | Accessibility Statement
Privacy Copyright
University of Kentucky ®
An Equal Opportunity University Accreditation Directory Email Privacy Policy Accessibility Disclosures

IMAGES
VIDEO
COMMENTS
The aim of this thesis is to research what has stopped 3D printing from catching on faster? What factors are hindering large scale adoption for mass production?
1149036 C E Berrimi C Anish Berrimi, C.E. and Anish C. (2017). The effects of surface orientation and different print settings (Master thesis of Halmstad University, Sweden) Retrieved from...
Exploring 3D Printing - Masters Thesis by Prateek Singh - Issuu This report is an exploration of the field of 3D Printing aka Additive Manufacturing (AM). The field of 3D printing is...
Master's Thesis College Engineering Department/School/Program Mechanical Engineering First Advisor Dr. Y. Charles Lu Abstract 3D printing is a revolutionary manufacturing method that allows the productions of engineering parts almost directly from modeling software on a computer.
Title of thesis SUCCESS FACTORS FOR 3D PRINTING TECHNOLOGY ADOPTION IN CONSTRUCTION Pankhuri Pimpley, Master of Science Thesis directed by Professor Miroslaw J. Skibniewski Department of Civil and Environmental Engineering 3D printing or Additive Manufacturing (AM) technology is taking small, slow steps in the
2.1 3D Printing 3D printing is similar to regular Two Dimensional (2D) printing on paper. It just adds the third dimension to produce objects that can be taken into hand. Like in paper printing it transforms the digital data from the computer into a real physical object. A term that is often mentioned as 3D printing is additive manufacturing.