What Are the Elements of a Good Hypothesis?
Hero Images/Getty Images
- Scientific Method
- Chemical Laws
- Periodic Table
- Projects & Experiments
- Biochemistry
- Physical Chemistry
- Medical Chemistry
- Chemistry In Everyday Life
- Famous Chemists
- Activities for Kids
- Abbreviations & Acronyms
- Weather & Climate
- Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
- B.A., Physics and Mathematics, Hastings College
A hypothesis is an educated guess or prediction of what will happen. In science, a hypothesis proposes a relationship between factors called variables. A good hypothesis relates an independent variable and a dependent variable. The effect on the dependent variable depends on or is determined by what happens when you change the independent variable . While you could consider any prediction of an outcome to be a type of hypothesis, a good hypothesis is one you can test using the scientific method. In other words, you want to propose a hypothesis to use as the basis for an experiment.

Cause and Effect or 'If, Then' Relationships
A good experimental hypothesis can be written as an if, then statement to establish cause and effect on the variables. If you make a change to the independent variable, then the dependent variable will respond. Here's an example of a hypothesis:
If you increase the duration of light, (then) corn plants will grow more each day.
The hypothesis establishes two variables, length of light exposure, and the rate of plant growth. An experiment could be designed to test whether the rate of growth depends on the duration of light. The duration of light is the independent variable, which you can control in an experiment . The rate of plant growth is the dependent variable, which you can measure and record as data in an experiment.
Key Points of Hypothesis
When you have an idea for a hypothesis, it may help to write it out in several different ways. Review your choices and select a hypothesis that accurately describes what you are testing.
- Does the hypothesis relate an independent and dependent variable? Can you identify the variables?
- Can you test the hypothesis? In other words, could you design an experiment that would allow you to establish or disprove a relationship between the variables?
- Would your experiment be safe and ethical?
- Is there a simpler or more precise way to state the hypothesis? If so, rewrite it.
What If the Hypothesis Is Incorrect?
It's not wrong or bad if the hypothesis is not supported or is incorrect. Actually, this outcome may tell you more about a relationship between the variables than if the hypothesis is supported. You may intentionally write your hypothesis as a null hypothesis or no-difference hypothesis to establish a relationship between the variables.
For example, the hypothesis:
The rate of corn plant growth does not depend on the duration of light.
This can be tested by exposing corn plants to different length "days" and measuring the rate of plant growth. A statistical test can be applied to measure how well the data support the hypothesis. If the hypothesis is not supported, then you have evidence of a relationship between the variables. It's easier to establish cause and effect by testing whether "no effect" is found. Alternatively, if the null hypothesis is supported, then you have shown the variables are not related. Either way, your experiment is a success.
Need more examples of how to write a hypothesis ? Here you go:
- If you turn out all the lights, you will fall asleep faster. (Think: How would you test it?)
- If you drop different objects, they will fall at the same rate.
- If you eat only fast food, then you will gain weight.
- If you use cruise control, then your car will get better gas mileage.
- If you apply a top coat, then your manicure will last longer.
- If you turn the lights on and off rapidly, then the bulb will burn out faster.
- Null Hypothesis Definition and Examples
- Six Steps of the Scientific Method
- What Is a Hypothesis? (Science)
- Understanding Simple vs Controlled Experiments
- Dependent Variable Definition and Examples
- Null Hypothesis Examples
- How To Design a Science Fair Experiment
- Scientific Method Flow Chart
- Scientific Method Vocabulary Terms
- Definition of a Hypothesis
- What Are Independent and Dependent Variables?
- Scientific Variable
- What Is an Experiment? Definition and Design
- What Is a Control Group?
- What Is a Testable Hypothesis?
By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.
- Social Anxiety Disorder
- Bipolar Disorder
- Kids Mental Health
- Therapy Center
- When To See a Therapist
- Types of Therapy
- Best Online Therapy
- Best Couples Therapy
- Best Family Therapy
- Managing Stress
- Sleep and Dreaming
- Understanding Emotions
- Self-Improvement
- Healthy Relationships
- Relationships in 2023
- Student Resources
- Personality Types
- Verywell Mind Insights
- 2023 Verywell Mind 25
- Mental Health in the Classroom
- Editorial Process
- Meet Our Review Board
- Crisis Support
How to Write a Great Hypothesis
Hypothesis Format, Examples, and Tips
Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
:max_bytes(150000):strip_icc():format(webp)/IMG_9791-89504ab694d54b66bbd72cb84ffb860e.jpg)
Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk, "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.
:max_bytes(150000):strip_icc():format(webp)/VW-MIND-Amy-2b338105f1ee493f94d7e333e410fa76.jpg)
Verywell / Alex Dos Diaz
- The Scientific Method
Hypothesis Format
Falsifiability of a hypothesis, operational definitions, types of hypotheses, hypotheses examples.
- Collecting Data
Frequently Asked Questions
A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study.
One hypothesis example would be a study designed to look at the relationship between sleep deprivation and test performance might have a hypothesis that states: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."
This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.
The Hypothesis in the Scientific Method
In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:
- Forming a question
- Performing background research
- Creating a hypothesis
- Designing an experiment
- Collecting data
- Analyzing the results
- Drawing conclusions
- Communicating the results
The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. It is only at this point that researchers begin to develop a testable hypothesis. Unless you are creating an exploratory study, your hypothesis should always explain what you expect to happen.
In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.
Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore a number of factors to determine which ones might contribute to the ultimate outcome.
In many cases, researchers may find that the results of an experiment do not support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.
In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."
In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk wisdom that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."
Elements of a Good Hypothesis
So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:
- Is your hypothesis based on your research on a topic?
- Can your hypothesis be tested?
- Does your hypothesis include independent and dependent variables?
Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the journal articles you read . Many authors will suggest questions that still need to be explored.
To form a hypothesis, you should take these steps:
- Collect as many observations about a topic or problem as you can.
- Evaluate these observations and look for possible causes of the problem.
- Create a list of possible explanations that you might want to explore.
- After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.
In the scientific method , falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.
Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that if something was false, then it is possible to demonstrate that it is false.
One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.
A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.
For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.
These precise descriptions are important because many things can be measured in a number of different ways. One of the basic principles of any type of scientific research is that the results must be replicable. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.
Some variables are more difficult than others to define. How would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.
In order to measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming other people. In this situation, the researcher might utilize a simulated task to measure aggressiveness.
Hypothesis Checklist
- Does your hypothesis focus on something that you can actually test?
- Does your hypothesis include both an independent and dependent variable?
- Can you manipulate the variables?
- Can your hypothesis be tested without violating ethical standards?
The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:
- Simple hypothesis : This type of hypothesis suggests that there is a relationship between one independent variable and one dependent variable.
- Complex hypothesis : This type of hypothesis suggests a relationship between three or more variables, such as two independent variables and a dependent variable.
- Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
- Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
- Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative sample of the population and then generalizes the findings to the larger group.
- Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.
A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the dependent variable if you change the independent variable .
The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."
A few examples of simple hypotheses:
- "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
- Complex hypothesis: "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."
- "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
Examples of a complex hypothesis include:
- "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
- "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."
Examples of a null hypothesis include:
- "Children who receive a new reading intervention will have scores different than students who do not receive the intervention."
- "There will be no difference in scores on a memory recall task between children and adults."
Examples of an alternative hypothesis:
- "Children who receive a new reading intervention will perform better than students who did not receive the intervention."
- "Adults will perform better on a memory task than children."
Collecting Data on Your Hypothesis
Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.
Descriptive Research Methods
Descriptive research such as case studies , naturalistic observations , and surveys are often used when it would be impossible or difficult to conduct an experiment . These methods are best used to describe different aspects of a behavior or psychological phenomenon.
Once a researcher has collected data using descriptive methods, a correlational study can then be used to look at how the variables are related. This type of research method might be used to investigate a hypothesis that is difficult to test experimentally.
Experimental Research Methods
Experimental methods are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).
Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually cause another to change.
A Word From Verywell
The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.
Some examples of how to write a hypothesis include:
- "Staying up late will lead to worse test performance the next day."
- "People who consume one apple each day will visit the doctor fewer times each year."
- "Breaking study sessions up into three 20-minute sessions will lead to better test results than a single 60-minute study session."
The four parts of a hypothesis are:
- The research question
- The independent variable (IV)
- The dependent variable (DV)
- The proposed relationship between the IV and DV
Castillo M. The scientific method: a need for something better? . AJNR Am J Neuroradiol. 2013;34(9):1669-71. doi:10.3174/ajnr.A3401
Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.
By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.

- Manuscript Preparation
What is and How to Write a Good Hypothesis in Research?
- 4 minute read
- 164.4K views
Table of Contents
One of the most important aspects of conducting research is constructing a strong hypothesis. But what makes a hypothesis in research effective? In this article, we’ll look at the difference between a hypothesis and a research question, as well as the elements of a good hypothesis in research. We’ll also include some examples of effective hypotheses, and what pitfalls to avoid.
What is a Hypothesis in Research?
Simply put, a hypothesis is a research question that also includes the predicted or expected result of the research. Without a hypothesis, there can be no basis for a scientific or research experiment. As such, it is critical that you carefully construct your hypothesis by being deliberate and thorough, even before you set pen to paper. Unless your hypothesis is clearly and carefully constructed, any flaw can have an adverse, and even grave, effect on the quality of your experiment and its subsequent results.
Research Question vs Hypothesis
It’s easy to confuse research questions with hypotheses, and vice versa. While they’re both critical to the Scientific Method, they have very specific differences. Primarily, a research question, just like a hypothesis, is focused and concise. But a hypothesis includes a prediction based on the proposed research, and is designed to forecast the relationship of and between two (or more) variables. Research questions are open-ended, and invite debate and discussion, while hypotheses are closed, e.g. “The relationship between A and B will be C.”
A hypothesis is generally used if your research topic is fairly well established, and you are relatively certain about the relationship between the variables that will be presented in your research. Since a hypothesis is ideally suited for experimental studies, it will, by its very existence, affect the design of your experiment. The research question is typically used for new topics that have not yet been researched extensively. Here, the relationship between different variables is less known. There is no prediction made, but there may be variables explored. The research question can be casual in nature, simply trying to understand if a relationship even exists, descriptive or comparative.
How to Write Hypothesis in Research
Writing an effective hypothesis starts before you even begin to type. Like any task, preparation is key, so you start first by conducting research yourself, and reading all you can about the topic that you plan to research. From there, you’ll gain the knowledge you need to understand where your focus within the topic will lie.
Remember that a hypothesis is a prediction of the relationship that exists between two or more variables. Your job is to write a hypothesis, and design the research, to “prove” whether or not your prediction is correct. A common pitfall is to use judgments that are subjective and inappropriate for the construction of a hypothesis. It’s important to keep the focus and language of your hypothesis objective.
An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions.
Use the following points as a checklist to evaluate the effectiveness of your research hypothesis:
- Predicts the relationship and outcome
- Simple and concise – avoid wordiness
- Clear with no ambiguity or assumptions about the readers’ knowledge
- Observable and testable results
- Relevant and specific to the research question or problem
Research Hypothesis Example
Perhaps the best way to evaluate whether or not your hypothesis is effective is to compare it to those of your colleagues in the field. There is no need to reinvent the wheel when it comes to writing a powerful research hypothesis. As you’re reading and preparing your hypothesis, you’ll also read other hypotheses. These can help guide you on what works, and what doesn’t, when it comes to writing a strong research hypothesis.
Here are a few generic examples to get you started.
Eating an apple each day, after the age of 60, will result in a reduction of frequency of physician visits.
Budget airlines are more likely to receive more customer complaints. A budget airline is defined as an airline that offers lower fares and fewer amenities than a traditional full-service airline. (Note that the term “budget airline” is included in the hypothesis.
Workplaces that offer flexible working hours report higher levels of employee job satisfaction than workplaces with fixed hours.
Each of the above examples are specific, observable and measurable, and the statement of prediction can be verified or shown to be false by utilizing standard experimental practices. It should be noted, however, that often your hypothesis will change as your research progresses.
Language Editing Plus
Elsevier’s Language Editing Plus service can help ensure that your research hypothesis is well-designed, and articulates your research and conclusions. Our most comprehensive editing package, you can count on a thorough language review by native-English speakers who are PhDs or PhD candidates. We’ll check for effective logic and flow of your manuscript, as well as document formatting for your chosen journal, reference checks, and much more.

Research Paper Conclusion: Know How To Write It

- Publication Recognition
How to Write and Improve your Researcher Profile
You may also like.

Changing Lines: Sentence Patterns in Academic Writing

Path to An Impactful Paper: Common Manuscript Writing Patterns and Structure

How to write the results section of a research paper

What are Implications in Research?

Differentiating between the abstract and the introduction of a research paper

What is the Background of a Study and How Should it be Written?

How to Use Tables and Figures effectively in Research Papers

Converting your PhD Thesis into a Book in Five Steps
Input your search keywords and press Enter.

- Environment
- Natural Sciences
- Matter and Energy
- Quantum Mechanics
- Thermodynamics
- Periodic Table
- Applied Chemistry
- Physical Chemistry
- Biochemistry
- Microbiology
- Plants and Fungi
- Planet Earth
- Earth Dynamics
- Rocks and Minerals
- Invertebrates
- Conservation
- Animal facts
- Climate change
- Weather and atmosphere
- Diseases and Conditions
- Mind and Brain
- Food and Nutrition
- Anthropology
- Archaeology
- The Solar System
- Asteroids, meteors & comets
- Astrophysics
- Exoplanets & Alien Life
- Spaceflight and Exploration
- Computer Science & IT
- Engineering
- Sustainability
- Renewable Energy
- Green Living
- Culture & Society
- Bizarre Stories
- Art and Music
- Movies and Shows
- Science Careers
- Metascience
- Fringe Science
- Science Experiments
- School and Study
- Agriculture
- Electronics
- Mathematics
- Nanotechnology
- Paleontology
- Privacy Policy
Home → Features → Resources → Metascience
What makes a good hypothesis?
Formulating a good hypothesis is the backbone of the scientific method.
A hypothesis is a precise and testable statement of what a researcher predicts will be the outcome of a study. This usually involves proposing a relationship between two or more variables.
Verifying a hypothesis, also sometimes referred to as a working statement , requires using the scientific method , usually by designing an experiment.
For instance, one common adage is 'an apple a day keeps the doctor away'. If we use this aphorism as our hypothesis then we can make a prediction that consuming at least one apple per day should result in fewer visits to the doctor than the general population that eats apples sparingly or never.
In 2015 , researchers at Dartmouth College, the University of Michigan School of Nursing, and the Veteran Affairs Medical Center in White River actually investigated this hypothesis. They combed national nutrition data collected from nearly 8,400 men and women — 753 of whom ate an apple a day. The study found that “evidence does not support that an apple a day keeps the doctor away; however, the small fraction of US adults who eat an apple a day do appear to use fewer prescription medications.”
So perhaps there's a glimmer of truth to this hypothesis, but not necessarily because apples are some miracle foods. It could be that people who eat apples every day also consume other fresh produce and less processed foods than the general population, a diet that helps to prevent obesity, a huge risk factor for a myriad of illnesses such as hypertension and diabetes that require prescription medication. This is why hypotheses need to be defined as precisely and as narrowly as possible in order to isolate confounding effects.
Types of hypothesis
The 'apple a day' study is an example of an alternative hypothesis , which states that there is a relationship between two variables being studied, the daily apple consumption and visits to the GP. One variable, called the independent variable , has an effect on the other, known as the dependent variable . The independent variable is what you change and the dependent variable is what you measure. For example, if I am measuring how a plant grows with different fertilizers, the fertilizers are what I can change freely (independent) while the plant’s growth would be dependent on what it is given. In order for an alternative hypothesis to be validated, the results have to have statistical significance in order to rule out chance.
Examples of alternative hypotheses:
- Dogs wag their tails when they're happy.
- The accumulation of greenhouse gases in the atmosphere raises global average temperature.
- Wearing a seatbelt reduces traffic-related fatalities.
- Students who attend class earn higher scores than students who skip class.
- People exposed to higher levels of UV light have a higher incidence of skin cancer than the general population.
Another common type of hypothesis used in science is the null hypothesis , which states that there is no relationship between two variables. This means that controlling one variable has no effect on the other. Any results are due to chance and thus pursuing a cause-effect relationship between the two variables is futile.
The null hypothesis is the polar opposite of the alternative hypothesis since they contain opposing viewpoints. In fact, the latter is called this way because it is an alternative to the null hypothesis. An apple a day doesn't keep the doctor away, you could propose if you were designing a null hypothesis experiment.
Examples of null hypotheses:
- Taking an aspirin a day doesn't reduce the risk of a heart attack.
- Playing classical music doesn't help plants grow more biomass.
- Vaccines don't cause autism.
- Hyperactivity is unrelated to sugar consumption.
The acceptance of the alternative hypothesis, often denoted by H 1 , depends on the rejection of the null hypothesis (H 0 ). A null hypothesis can never be proven, it can only be rejected. To test a null hypothesis and determine whether the observed data is not due to change or the manipulation of data, scientists employ a significance test.
Rejecting the null hypothesis does not necessarily imply that a study did not produce the required results. Instead, it sets the stage for further experimentation to see if a relationship between the two variables truly exists.
For instance, say a scientist proposes a null hypothesis stating that "the rate of plant growth is not affected by sunlight." One way to investigate this conjecture would be to monitor a random sample of plants grown with or without sunlight. You then measure the average mass of each group of plants and if there's a statistically significant difference in the observed change, then the null hypothesis is rejected. Consequently, the alternate hypothesis that "plant growth is affected by sunlight" is accepted, then scientists can perform further research into the effects of different wavelengths of light or intensities of light on plant growth.
At this point, you might be wondering why we need the null hypothesis. Why not propose and test an alternate hypothesis and see if it is true? One explanation is that science cannot provide absolute proofs, but rather approximations. The scientific method cannot explicitly "prove" propositions. We can never prove an alternative hypothesis with 100% confidence. What we can do instead is reject the null hypothesis, supporting the alternative hypothesis.
It just so happens that it is easier to disprove a hypothesis than to positively prove one. But the supposition that the null hypothesis is incorrect allows for a stable foundation on which scientists can build. You can view it this way: the results from testing the null hypothesis lay the groundwork for the alternate hypothesis, which explores multiple ideas that may or may not be correct.
The alternative and null hypotheses are the two main types you'll encounter in studies. But the alternative hypothesis can be further broken down into two categories: directional and nondirectional alternative hypotheses.
The directional alternative hypothesis predicts that the independent variable will have an effect on the dependent variable and the direction in which the change will take place. The nondirectional alternative hypothesis predicts the independent variable will have an effect but its direction is not specific, without stating the magnitude of the difference.
For instance, a non-directional hypothesis could be "there will be a difference in how many words children and adults can recall," while the directional hypothesis could predict that "adults will recall more words than children."
Hypotheses can be simple or complex. A simple hypothesis predicts a relationship between a single dependent variable and a single independent variable while a complex one predicts a relationship between two or more independent and dependent variables. An example of a complex hypothesis could be "Do age and weight affect the chances of getting diabetes and heart diseases?" There are two independent and two dependent variables in this statement whose relationship we seek to verify.
How to write a good hypothesis
The way you formulate a hypothesis can make or break your research because the validity of an experiment and its results rely heavily on a robust testable hypothesis. A good research hypothesis typically involves more effort than a simple guess or assumption.
Generally, a good hypothesis:
- is testable, meaning it must be possible to show that a hypothesis is true or false, and the results of this investigation have to be replicable;
- includes both an independent and dependent variable.
- allows for the manipulation of the variables ethically.
- has clear and focused language. Don't be vague.
- is related to other published research.
- is written, either explicitly or not, as an "if-then" statement because we can then make a prediction of the outcome of an experiment.
An example of a testable good hypothesis is a conjecture such as "Students recall more information during the afternoon than during the morning." The independent variable is the time of the lecture and the dependent variable is the recall of the information presented in the lecture, which can be verified with standardized tests.
A bad hypothesis could be something like "Goldfish make better pets than cats." Right off the bat, you can see a couple of problems with this statement. What constitutes a good pet? Is a good pet fluffy and interactive or one that is low maintenance? Can I predict whether a cat or goldfish will make for a good pet? This is more a matter of opinion that doesn't provide any meaningful results.
Often, the best hypotheses start from observation. For instance, everybody has witnessed that objects that are thrown into the air will fall toward the ground. Sir Isaac Newton formulated a hypothesis in the 17th-century that explains this observation, stating that 'objects with mass attract each other through a gravitational field.'
But despite Newton's hypothesis being very well written, in the sense that it is testable, simple, clear, and universal, we now know it was wrong. In the 20th-century, Albert Einstein showed that a hypothesis that more precisely explains the observed phenomenon is that 'objects with mass cause space to bend.' The lesson here is that all hypotheses are temporary and partial, they're never permanent and irrefutable. This is also a good example of why the null hypothesis is so paramount.
Hypothesis formulation and testing through statistical methods are integral parts of the scientific method, the systematic approach to assessing whether a statement is true or false. All the best stories in science start with a good hypothesis.
- Book review: ‘The Gaia Hypothesis: Science on a Pagan Planet’
- No, a Nigerian didn’t solve the Riemann Hypothesis
- Renowned mathematician Michael Atiyah claims to have solved the Riemann Hypothesis
- The Betelgeuse false alarm and Red Giants dust hypothesis
- Why did T-rex have short arms? A new hypothesis says “so other T-rex’s don’t bite them off”
© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.
Don't you want to get smarter every day?
Over 35,000 subscribers can't be wrong. Don't worry, we never spam. By signing up you agree to our privacy policy .


- Editing Services    Language Editing    Scientific Editing    Grant Editing new    Translation         More Services+    Response Letter Editing    Annual Review & Tenure Files    LaTeX Language Editing -->
- More Service +    Response Letter Editing    Annual Review & Tenure Files    LaTeX Language Editing
- Publication Support  Journal Recommendation  Manuscript Formatting  Figure Formatting  Plagiarism Check  Conference Poster  Plain Language Summary
- Scientific Illustration  Journal Cover Design  Graphical Abstract  Infographic  Custom Illustration
- Scientific Videos  Video Abstract  Explainer Video  Scientific Animation
- Ethics and Confidentiality
- Editorial Certificate
- Testimonials
- Design Gallery
- Institutional Provider
- Publisher Portal
- Brand Localization
- Journal Selector Tool
- Learning Nexus

What Makes a Strong Hypothesis for Scientific Research?

Intentional Space Tag
Contact us
Your name *
Your email *
Your message *
Please fill in all fields and provide a valid email.
© 2010-2023 ACCDON LLC 400 5 th Ave, Suite 530, Waltham, MA 02451, USA Privacy • Terms of Service
© 2010-2023 United States: ACCDON LLC Tel: 1-781-202-9968 Email: [email protected]
Address: 400 5 th Ave, Suite 530, Waltham, Massachusetts 02451, United States

Have a language expert improve your writing
Run a free plagiarism check in 10 minutes, generate accurate citations for free.
- Knowledge Base
Methodology
- How to Write a Strong Hypothesis | Steps & Examples
How to Write a Strong Hypothesis | Steps & Examples
Published on May 6, 2022 by Shona McCombes . Revised on August 15, 2023.
A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .
Example: Hypothesis
Daily apple consumption leads to fewer doctor’s visits.
Table of contents
What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.
A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.
A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).
Variables in hypotheses
Hypotheses propose a relationship between two or more types of variables .
- An independent variable is something the researcher changes or controls.
- A dependent variable is something the researcher observes and measures.
If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias will affect your results.
In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .
Prevent plagiarism. Run a free check.
Step 1. ask a question.
Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.
Step 2. Do some preliminary research
Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.
At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.
Step 3. Formulate your hypothesis
Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis
You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:
- The relevant variables
- The specific group being studied
- The predicted outcome of the experiment or analysis
5. Phrase your hypothesis in three ways
To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.
In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.
If you are comparing two groups, the hypothesis can state what difference you expect to find between them.
6. Write a null hypothesis
If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .
- H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
- H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.
If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.
- Sampling methods
- Simple random sampling
- Stratified sampling
- Cluster sampling
- Likert scales
- Reproducibility
Statistics
- Null hypothesis
- Statistical power
- Probability distribution
- Effect size
- Poisson distribution
Research bias
- Optimism bias
- Cognitive bias
- Implicit bias
- Hawthorne effect
- Anchoring bias
- Explicit bias
A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).
Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.
Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.
Cite this Scribbr article
If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.
McCombes, S. (2023, August 15). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved August 30, 2023, from https://www.scribbr.com/methodology/hypothesis/
Is this article helpful?
Shona McCombes
Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, what is your plagiarism score.
- Resources Home
- AI Research Assistant
- Search for Papers
- Chrome Extension
- AI Detector
- Paraphraser
- Citation Generator
- April Papers
- June Papers
- July Papers

The Craft of Writing a Strong Hypothesis

Table of Contents
Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.
A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.
What is a Hypothesis?
The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper.
The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.
The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.
The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.
Different Types of Hypotheses

Types of hypotheses
Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.
Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.
1. Null hypothesis
A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.
2. Alternative hypothesis
Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.
- Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
- Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'
3. Simple hypothesis
A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.
4. Complex hypothesis
In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.
5. Associative and casual hypothesis
Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.
6. Empirical hypothesis
Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.
Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher the statement after assessing a group of women who take iron tablets and charting the findings.
7. Statistical hypothesis
The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.
Characteristics of a Good Hypothesis
Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:
- A research hypothesis has to be simple yet clear to look justifiable enough.
- It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
- It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
- A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
- If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
- A hypothesis must keep and reflect the scope for further investigations and experiments.
Separating a Hypothesis from a Prediction
Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.
A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.
Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.
For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.
Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.
Finally, How to Write a Hypothesis

Quick tips on writing a hypothesis
1. Be clear about your research question
A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.
2. Carry out a recce
Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.
Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.
3. Create a 3-dimensional hypothesis
Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.
In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.
4. Write the first draft
Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.
Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.
5. Proof your hypothesis
After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.
Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.
Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.
Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.
It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.
If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.
Frequently Asked Questions (FAQs)
1. what is the definition of hypothesis.
According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.
2. What is an example of hypothesis?
The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."
3. What is an example of null hypothesis?
A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."
4. What are the types of research?
• Fundamental research
• Applied research
• Qualitative research
• Quantitative research
• Mixed research
• Exploratory research
• Longitudinal research
• Cross-sectional research
• Field research
• Laboratory research
• Fixed research
• Flexible research
• Action research
• Policy research
• Classification research
• Comparative research
• Causal research
• Inductive research
• Deductive research
5. How to write a hypothesis?
• Your hypothesis should be able to predict the relationship and outcome.
• Avoid wordiness by keeping it simple and brief.
• Your hypothesis should contain observable and testable outcomes.
• Your hypothesis should be relevant to the research question.
6. What are the 2 types of hypothesis?
• Null hypotheses are used to test the claim that "there is no difference between two groups of data".
• Alternative hypotheses test the claim that "there is a difference between two data groups".
7. Difference between research question and research hypothesis?
A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.
8. What is plural for hypothesis?
The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."
9. What is the red queen hypothesis?
The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.
10. Who is known as the father of null hypothesis?
The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.
11. When to reject null hypothesis?
You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.
You might also like

Elicit vs. SciSpace: AI research assistant for effortless literature review

QuillBot vs SciSpace: Choose the best AI-paraphrasing tool

Ace your research with these 5 literature review tools (+2 bonus tools)

Public Health Notes
Your partner for better health, hypothesis in research: definition, types and importance .
April 21, 2020 Kusum Wagle Epidemiology 0

Table of Contents
What is Hypothesis?
- Hypothesis is a logical prediction of certain occurrences without the support of empirical confirmation or evidence.
- In scientific terms, it is a tentative theory or testable statement about the relationship between two or more variables i.e. independent and dependent variable.
Different Types of Hypothesis:
1. Simple Hypothesis:
- A Simple hypothesis is also known as composite hypothesis.
- In simple hypothesis all parameters of the distribution are specified.
- It predicts relationship between two variables i.e. the dependent and the independent variable
2. Complex Hypothesis:
- A Complex hypothesis examines relationship between two or more independent variables and two or more dependent variables.
3. Working or Research Hypothesis:
- A research hypothesis is a specific, clear prediction about the possible outcome of a scientific research study based on specific factors of the population.
4. Null Hypothesis:
- A null hypothesis is a general statement which states no relationship between two variables or two phenomena. It is usually denoted by H 0 .
5. Alternative Hypothesis:
- An alternative hypothesis is a statement which states some statistical significance between two phenomena. It is usually denoted by H 1 or H A .
6. Logical Hypothesis:
- A logical hypothesis is a planned explanation holding limited evidence.
7. Statistical Hypothesis:
- A statistical hypothesis, sometimes called confirmatory data analysis, is an assumption about a population parameter.
Although there are different types of hypothesis, the most commonly and used hypothesis are Null hypothesis and alternate hypothesis . So, what is the difference between null hypothesis and alternate hypothesis? Let’s have a look:
Major Differences Between Null Hypothesis and Alternative Hypothesis:
Importance of hypothesis:.
- It ensures the entire research methodologies are scientific and valid.
- It helps to assume the probability of research failure and progress.
- It helps to provide link to the underlying theory and specific research question.
- It helps in data analysis and measure the validity and reliability of the research.
- It provides a basis or evidence to prove the validity of the research.
- It helps to describe research study in concrete terms rather than theoretical terms.
Characteristics of Good Hypothesis:
- Should be simple.
- Should be specific.
- Should be stated in advance.
References and For More Information:
https://ocw.jhsph.edu/courses/StatisticalReasoning1/PDFs/2009/BiostatisticsLecture4.pdf
https://keydifferences.com/difference-between-type-i-and-type-ii-errors.html
https://www.khanacademy.org/math/ap-statistics/tests-significance-ap/error-probabilities-power/a/consequences-errors-significance
https://stattrek.com/hypothesis-test/hypothesis-testing.aspx
http://davidmlane.com/hyperstat/A2917.html
https://study.com/academy/lesson/what-is-a-hypothesis-definition-lesson-quiz.html
https://keydifferences.com/difference-between-null-and-alternative-hypothesis.html
https://blog.minitab.com/blog/adventures-in-statistics-2/understanding-hypothesis-tests-why-we-need-to-use-hypothesis-tests-in-statistics
- Characteristics of Good Hypothesis
- complex hypothesis
- example of alternative hypothesis
- example of null hypothesis
- how is null hypothesis different to alternative hypothesis
- Importance of Hypothesis
- null hypothesis vs alternate hypothesis
- simple hypothesis
- Types of Hypotheses
- what is alternate hypothesis
- what is alternative hypothesis
- what is hypothesis?
- what is logical hypothesis
- what is null hypothesis
- what is research hypothesis
- what is statistical hypothesis
- why is hypothesis necessary
Copyright © 2023 | WordPress Theme by MH Themes

IMAGES
VIDEO
COMMENTS
A conclusion is the final process of the basic scientific method by which scientists reveal whether the hypothesis was proven correct, according to certified math and science teacher Patricia McNerney.
According to the scientific method, one must first formulate a question and then do background research before it is possible to make a hypothesis. The scientific method, of which the hypothesis is a key component, has long been used by sci...
An a priori hypothesis is one that is generated prior to a research study taking place. A priori hypotheses are distinct from a posteriori hypotheses, which are generated after an observable phenomenon occurs.
With a good hypothesis, it should be easily discernable if the evidence is or is not supporting it. In support of this trait, all terms, variables, and metrics
In science, a hypothesis proposes a relationship between factors called variables. A good hypothesis relates an independent variable and a
Elements of a Good Hypothesis · Collect as many observations about a topic or problem as you can. · Evaluate these observations and look for
Topic –Research Hypothesis -Meaning, Nature & Importance-. Characteristics of Good a Hypothesis. Hypothesis-The research activities are planned to verify
An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to
is testable, meaning it must be possible to show that a hypothesis is true or false, and the results of this investigation have to be replicable; · includes both
It is important to be explicit, as the hallmark of a good hypothesis is the potential to refute it as well as support it. • Are your variables clearly defined?
Shona has a bachelor's and two master's degrees, so she's an expert at writing a great thesis. She has also worked as an editor and teacher
It explicitly states that the dependent variable affects the independent variable. A good alternative hypothesis example is “Attending
Major Differences Between Null Hypothesis and Alternative Hypothesis: Importance of Hypothesis: Characteristics of Good Hypothesis: References
The term hypothesis has been defined in several ways.