• Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

how to include a hypothesis in a research paper

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

how to include a hypothesis in a research paper

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis, operational definitions, types of hypotheses, hypotheses examples.

  • Collecting Data

Frequently Asked Questions

A hypothesis is a tentative statement about the relationship between two or more  variables. It is a specific, testable prediction about what you expect to happen in a study.

One hypothesis example would be a study designed to look at the relationship between sleep deprivation and test performance might have a hypothesis that states: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. It is only at this point that researchers begin to develop a testable hypothesis. Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore a number of factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk wisdom that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis.   In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in a number of different ways. One of the basic principles of any type of scientific research is that the results must be replicable.   By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. How would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

In order to measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming other people. In this situation, the researcher might utilize a simulated task to measure aggressiveness.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests that there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type of hypothesis suggests a relationship between three or more variables, such as two independent variables and a dependent variable.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative sample of the population and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • Complex hypothesis: "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "Children who receive a new reading intervention will have scores different than students who do not receive the intervention."
  • "There will be no difference in scores on a memory recall task between children and adults."

Examples of an alternative hypothesis:

  • "Children who receive a new reading intervention will perform better than students who did not receive the intervention."
  • "Adults will perform better on a memory task than children." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when it would be impossible or difficult to  conduct an experiment . These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a correlational study can then be used to look at how the variables are related. This type of research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

A Word From Verywell

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Some examples of how to write a hypothesis include:

  • "Staying up late will lead to worse test performance the next day."
  • "People who consume one apple each day will visit the doctor fewer times each year."
  • "Breaking study sessions up into three 20-minute sessions will lead to better test results than a single 60-minute study session."

The four parts of a hypothesis are:

  • The research question
  • The independent variable (IV)
  • The dependent variable (DV)
  • The proposed relationship between the IV and DV

Castillo M. The scientific method: a need for something better? . AJNR Am J Neuroradiol. 2013;34(9):1669-71. doi:10.3174/ajnr.A3401

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Elsevier QRcode Wechat

  • Manuscript Preparation

What is and How to Write a Good Hypothesis in Research?

  • 4 minute read
  • 260.9K views

Table of Contents

One of the most important aspects of conducting research is constructing a strong hypothesis. But what makes a hypothesis in research effective? In this article, we’ll look at the difference between a hypothesis and a research question, as well as the elements of a good hypothesis in research. We’ll also include some examples of effective hypotheses, and what pitfalls to avoid.

What is a Hypothesis in Research?

Simply put, a hypothesis is a research question that also includes the predicted or expected result of the research. Without a hypothesis, there can be no basis for a scientific or research experiment. As such, it is critical that you carefully construct your hypothesis by being deliberate and thorough, even before you set pen to paper. Unless your hypothesis is clearly and carefully constructed, any flaw can have an adverse, and even grave, effect on the quality of your experiment and its subsequent results.

Research Question vs Hypothesis

It’s easy to confuse research questions with hypotheses, and vice versa. While they’re both critical to the Scientific Method, they have very specific differences. Primarily, a research question, just like a hypothesis, is focused and concise. But a hypothesis includes a prediction based on the proposed research, and is designed to forecast the relationship of and between two (or more) variables. Research questions are open-ended, and invite debate and discussion, while hypotheses are closed, e.g. “The relationship between A and B will be C.”

A hypothesis is generally used if your research topic is fairly well established, and you are relatively certain about the relationship between the variables that will be presented in your research. Since a hypothesis is ideally suited for experimental studies, it will, by its very existence, affect the design of your experiment. The research question is typically used for new topics that have not yet been researched extensively. Here, the relationship between different variables is less known. There is no prediction made, but there may be variables explored. The research question can be casual in nature, simply trying to understand if a relationship even exists, descriptive or comparative.

How to Write Hypothesis in Research

Writing an effective hypothesis starts before you even begin to type. Like any task, preparation is key, so you start first by conducting research yourself, and reading all you can about the topic that you plan to research. From there, you’ll gain the knowledge you need to understand where your focus within the topic will lie.

Remember that a hypothesis is a prediction of the relationship that exists between two or more variables. Your job is to write a hypothesis, and design the research, to “prove” whether or not your prediction is correct. A common pitfall is to use judgments that are subjective and inappropriate for the construction of a hypothesis. It’s important to keep the focus and language of your hypothesis objective.

An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions.

Use the following points as a checklist to evaluate the effectiveness of your research hypothesis:

  • Predicts the relationship and outcome
  • Simple and concise – avoid wordiness
  • Clear with no ambiguity or assumptions about the readers’ knowledge
  • Observable and testable results
  • Relevant and specific to the research question or problem

Research Hypothesis Example

Perhaps the best way to evaluate whether or not your hypothesis is effective is to compare it to those of your colleagues in the field. There is no need to reinvent the wheel when it comes to writing a powerful research hypothesis. As you’re reading and preparing your hypothesis, you’ll also read other hypotheses. These can help guide you on what works, and what doesn’t, when it comes to writing a strong research hypothesis.

Here are a few generic examples to get you started.

Eating an apple each day, after the age of 60, will result in a reduction of frequency of physician visits.

Budget airlines are more likely to receive more customer complaints. A budget airline is defined as an airline that offers lower fares and fewer amenities than a traditional full-service airline. (Note that the term “budget airline” is included in the hypothesis.

Workplaces that offer flexible working hours report higher levels of employee job satisfaction than workplaces with fixed hours.

Each of the above examples are specific, observable and measurable, and the statement of prediction can be verified or shown to be false by utilizing standard experimental practices. It should be noted, however, that often your hypothesis will change as your research progresses.

Language Editing Plus

Elsevier’s Language Editing Plus service can help ensure that your research hypothesis is well-designed, and articulates your research and conclusions. Our most comprehensive editing package, you can count on a thorough language review by native-English speakers who are PhDs or PhD candidates. We’ll check for effective logic and flow of your manuscript, as well as document formatting for your chosen journal, reference checks, and much more.

Systematic Literature Review or Literature Review

  • Research Process

Systematic Literature Review or Literature Review?

What is a Problem Statement

What is a Problem Statement? [with examples]

You may also like.

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper? This Section Could Be More Important Than You Think!

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

how to include a hypothesis in a research paper

The Clear Path to An Impactful Paper: ②

Essentials of Writing to Communicate Research in Medicine

The Essentials of Writing to Communicate Research in Medicine

There are some recognizable elements and patterns often used for framing engaging sentences in English. Find here the sentence patterns in Academic Writing

Changing Lines: Sentence Patterns in Academic Writing

how to include a hypothesis in a research paper

Path to An Impactful Paper: Common Manuscript Writing Patterns and Structure

Input your search keywords and press Enter.

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

how to include a hypothesis in a research paper

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 22 February 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

  • How it works

How to Write a Hypothesis – Steps & Tips

Published by Alaxendra Bets at August 14th, 2021 , Revised On October 26, 2023

What is a Research Hypothesis?

You can test a research statement with the help of experimental or theoretical research, known as a hypothesis.

If you want to find out the similarities, differences, and relationships between variables, you must write a testable hypothesis before compiling the data, performing analysis, and generating results to complete.

The data analysis and findings will help you test the hypothesis and see whether it is true or false. Here is all you need to know about how to write a hypothesis for a  dissertation .

Research Hypothesis Definition

Not sure what the meaning of the research hypothesis is?

A research hypothesis predicts an answer to the research question  based on existing theoretical knowledge or experimental data.

Some studies may have multiple hypothesis statements depending on the research question(s).  A research hypothesis must be based on formulas, facts, and theories. It should be testable by data analysis, observations, experiments, or other scientific methodologies that can refute or support the statement.

Variables in Hypothesis

Developing a hypothesis is easy. Most research studies have two or more variables in the hypothesis, particularly studies involving correlational and experimental research. The researcher can control or change the independent variable(s) while measuring and observing the independent variable(s).

“How long a student sleeps affects test scores.”

In the above statement, the dependent variable is the test score, while the independent variable is the length of time spent in sleep. Developing a hypothesis will be easy if you know your research’s dependent and independent variables.

Once you have developed a thesis statement, questions such as how to write a hypothesis for the dissertation and how to test a research hypothesis become pretty straightforward.

Looking for dissertation help?

Researchprospect to the rescue then.

We have expert writers on our team who are skilled at helping students with quantitative dissertations across a variety of STEM disciplines. Guaranteeing 100% satisfaction!

dissertation help

Step-by-Step Guide on How to Write a Hypothesis

Here are the steps involved in how to write a hypothesis for a dissertation.

Step 1: Start with a Research Question

  • Begin by asking a specific question about a topic of interest.
  • This question should be clear, concise, and researchable.

Example: Does exposure to sunlight affect plant growth?

Step 2: Do Preliminary Research

  • Before formulating a hypothesis, conduct background research to understand existing knowledge on the topic.
  • Familiarise yourself with prior studies, theories, or observations related to the research question.

Step 3: Define Variables

  • Independent Variable (IV): The factor that you change or manipulate in an experiment.
  • Dependent Variable (DV): The factor that you measure.

Example: IV: Amount of sunlight exposure (e.g., 2 hours/day, 4 hours/day, 8 hours/day) DV: Plant growth (e.g., height in centimetres)

Step 4: Formulate the Hypothesis

  • A hypothesis is a statement that predicts the relationship between variables.
  • It is often written as an “if-then” statement.

Example: If plants receive more sunlight, then they will grow taller.

Step 5: Ensure it is Testable

A good hypothesis is empirically testable. This means you should be able to design an experiment or observation to test its validity.

Example: You can set up an experiment where plants are exposed to varying amounts of sunlight and then measure their growth over a period of time.

Step 6: Consider Potential Confounding Variables

  • Confounding variables are factors other than the independent variable that might affect the outcome.
  • It is important to identify these to ensure that they do not skew your results.

Example: Soil quality, water frequency, or type of plant can all affect growth. Consider keeping these constant in your experiment.

Step 7: Write the Null Hypothesis

  • The null hypothesis is a statement that there is no effect or no relationship between the variables.
  • It is what you aim to disprove or reject through your research.

Example: There is no difference in plant growth regardless of the amount of sunlight exposure.

Step 8: Test your Hypothesis

Design an experiment or conduct observations to test your hypothesis.

Example: Grow three sets of plants: one set exposed to 2 hours of sunlight daily, another exposed to 4 hours, and a third exposed to 8 hours. Measure and compare their growth after a set period.

Step 9: Analyse the Results

After testing, review your data to determine if it supports your hypothesis.

Step 10: Draw Conclusions

  • Based on your findings, determine whether you can accept or reject the hypothesis.
  • Remember, even if you reject your hypothesis, it’s a valuable result. It can guide future research and refine questions.

Three Ways to Phrase a Hypothesis

Try to use “if”… and “then”… to identify the variables. The independent variable should be present in the first part of the hypothesis, while the dependent variable will form the second part of the statement. Consider understanding the below research hypothesis example to create a specific, clear, and concise research hypothesis;

If an obese lady starts attending Zomba fitness classes, her health will improve.

In academic research, you can write the predicted variable relationship directly because most research studies correlate terms.

The number of Zomba fitness classes attended by the obese lady has a positive effect on health.

If your research compares two groups, then you can develop a hypothesis statement on their differences.

An obese lady who attended most Zumba fitness classes will have better health than those who attended a few.

How to Write a Null Hypothesis

If a statistical analysis is involved in your research, then you must create a null hypothesis. If you find any relationship between the variables, then the null hypothesis will be the default position that there is no relationship between them. H0 is the symbol for the null hypothesis, while the hypothesis is represented as H1. The null hypothesis will also answer your question, “How to test the research hypothesis in the dissertation.”

H0: The number of Zumba fitness classes attended by the obese lady does not affect her health.

H1: The number of Zumba fitness classes attended by obese lady positively affects health.

Also see:  Your Dissertation in Education

Hypothesis Examples

Research Question: Does the amount of sunlight a plant receives affect its growth? Hypothesis: Plants that receive more sunlight will grow taller than plants that receive less sunlight.

Research Question: Do students who eat breakfast perform better in school exams than those who don’t? Hypothesis: Students who eat a morning breakfast will score higher on school exams compared to students who skip breakfast.

Research Question: Does listening to music while studying impact a student’s ability to retain information? Hypothesis 1 (Directional): Students who listen to music while studying will retain less information than those who study in silence. Hypothesis 2 (Non-directional): There will be a difference in information retention between students who listen to music while studying and those who study in silence.

How can ResearchProspect Help?

If you are unsure about how to rest a research hypothesis in a dissertation or simply unsure about how to develop a hypothesis for your research, then you can take advantage of our dissertation services which cover every tiny aspect of a dissertation project you might need help with including but not limited to setting up a hypothesis and research questions,  help with individual chapters ,  full dissertation writing ,  statistical analysis , and much more.

Frequently Asked Questions

What are the 5 rules for writing a good hypothesis.

  • Clear Statement: State a clear relationship between variables.
  • Testable: Ensure it can be investigated and measured.
  • Specific: Avoid vague terms, be precise in predictions.
  • Falsifiable: Design to allow potential disproof.
  • Relevant: Address research question and align with existing knowledge.

What is a hypothesis in simple words?

A hypothesis is an educated guess or prediction about something that can be tested. It is a statement that suggests a possible explanation for an event or phenomenon based on prior knowledge or observation. Scientists use hypotheses as a starting point for experiments to discover if they are true or false.

What is the hypothesis and examples?

A hypothesis is a testable prediction or explanation for an observation or phenomenon. For example, if plants are given sunlight, then they will grow. In this case, the hypothesis suggests that sunlight has a positive effect on plant growth. It can be tested by experimenting with plants in varying light conditions.

What is the hypothesis in research definition?

A hypothesis in research is a clear, testable statement predicting the possible outcome of a study based on prior knowledge and observation. It serves as the foundation for conducting experiments or investigations. Researchers test the validity of the hypothesis to draw conclusions and advance knowledge in a particular field.

Why is it called a hypothesis?

The term “hypothesis” originates from the Greek word “hypothesis,” which means “base” or “foundation.” It’s used to describe a foundational statement or proposition that can be tested. In scientific contexts, it denotes a tentative explanation for a phenomenon, serving as a starting point for investigation or experimentation.

You May Also Like

Not sure how to approach a company for your primary research study? Don’t worry. Here we have some tips for you to successfully gather primary study.

Struggling to find relevant and up-to-date topics for your dissertation? Here is all you need to know if unsure about how to choose dissertation topic.

Repository of ten perfect dissertation research question examples will provide you a better perspective about how to create dissertation research questions.

USEFUL LINKS

LEARNING RESOURCES

DMCA.com Protection Status

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Enago Academy

How to Develop a Good Research Hypothesis

' src=

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study.  Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

  • Is the language clear and focused?
  • What is the relationship between your hypothesis and your research topic?
  • Is your hypothesis testable? If yes, then how?
  • What are the possible explanations that you might want to explore?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate your variables without hampering the ethical standards?
  • Does your research predict the relationship and outcome?
  • Is your research simple and concise (avoids wordiness)?
  • Is it clear with no ambiguity or assumptions about the readers’ knowledge
  • Is your research observable and testable results?
  • Is it relevant and specific to the research question or problem?

research hypothesis example

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

Types of Research Hypothesis

The types of research hypothesis are stated below:

1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

  • There must be a possibility to prove that the hypothesis is true.
  • There must be a possibility to prove that the hypothesis is false.
  • The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

' src=

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Rate this article Cancel Reply

Your email address will not be published.

how to include a hypothesis in a research paper

Enago Academy's Most Popular

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

how to include a hypothesis in a research paper

  • Industry News

COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

8 Effective Strategies to Write Argumentative Essays

how to include a hypothesis in a research paper

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

how to include a hypothesis in a research paper

When should AI tools be used in university labs?

Useful Links

Share on Facebook

Learn How To Write A Hypothesis For Your Next Research Project!

blog image

Undoubtedly, research plays a crucial role in substantiating or refuting our assumptions. These assumptions act as potential answers to our questions. Such assumptions, also known as hypotheses, are considered key aspects of research. In this blog, we delve into the significance of hypotheses. And provide insights on how to write them effectively. So, let’s dive in and explore the art of writing hypotheses together.

Table of Contents

What is a Hypothesis?

A hypothesis is a crucial starting point in scientific research. It is an educated guess about the relationship between two or more variables. In other words, a hypothesis acts as a foundation for a researcher to build their study.

Here are some examples of well-crafted hypotheses:

  • Increased exposure to natural sunlight improves sleep quality in adults.

A positive relationship between natural sunlight exposure and sleep quality in adult individuals.

  • Playing puzzle games on a regular basis enhances problem-solving abilities in children.

Engaging in frequent puzzle gameplay leads to improved problem-solving skills in children.

  • Students and improved learning hecks.

S tudents using online  paper writing service  platforms (as a learning tool for receiving personalized feedback and guidance) will demonstrate improved writing skills. (compared to those who do not utilize such platforms).

  • The use of APA format in research papers. 

Using the  APA format  helps students stay organized when writing research papers. Organized students can focus better on their topics and, as a result, produce better quality work.

The Building Blocks of a Hypothesis

To better understand the concept of a hypothesis, let’s break it down into its basic components:

  • Variables . A hypothesis involves at least two variables. An independent variable and a dependent variable. The independent variable is the one being changed or manipulated, while the dependent variable is the one being measured or observed.
  • Relationship : A hypothesis proposes a relationship or connection between the variables. This could be a cause-and-effect relationship or a correlation between them.
  • Testability : A hypothesis should be testable and falsifiable, meaning it can be proven right or wrong through experimentation or observation.

Types of Hypotheses

When learning how to write a hypothesis, it’s essential to understand its main types. These include; alternative hypotheses and null hypotheses. In the following section, we explore both types of hypotheses with examples. 

Alternative Hypothesis (H1)

This kind of hypothesis suggests a relationship or effect between the variables. It is the main focus of the study. The researcher wants to either prove or disprove it. Many research divides this hypothesis into two subsections: 

  • Directional 

This type of H1 predicts a specific outcome. Many researchers use this hypothesis to explore the relationship between variables rather than the groups. 

  • Non-directional

You can take a guess from the name. This type of H1 does not provide a specific prediction for the research outcome. 

Here are some examples for your better understanding of how to write a hypothesis.

  • Consuming caffeine improves cognitive performance.  (This hypothesis predicts that there is a positive relationship between caffeine consumption and cognitive performance.)
  • Aerobic exercise leads to reduced blood pressure.  (This hypothesis suggests that engaging in aerobic exercise results in lower blood pressure readings.)
  • Exposure to nature reduces stress levels among employees.  (Here, the hypothesis proposes that employees exposed to natural environments will experience decreased stress levels.)
  • Listening to classical music while studying increases memory retention.  (This hypothesis speculates that studying with classical music playing in the background boosts students’ ability to retain information.)
  • Early literacy intervention improves reading skills in children.  (This hypothesis claims that providing early literacy assistance to children results in enhanced reading abilities.)
  • Time management in nursing students. ( Students who use a  nursing research paper writing service  have more time to focus on their studies and can achieve better grades in other subjects. )

Null Hypothesis (H0)

A null hypothesis assumes no relationship or effect between the variables. If the alternative hypothesis is proven to be false, the null hypothesis is considered to be true. Usually a null hypothesis shows no direct correlation between the defined variables. 

Here are some of the examples

  • The consumption of herbal tea has no effect on sleep quality.  (This hypothesis assumes that herbal tea consumption does not impact the quality of sleep.)
  • The number of hours spent playing video games is unrelated to academic performance.  (Here, the null hypothesis suggests that no relationship exists between video gameplay duration and academic achievement.)
  • Implementing flexible work schedules has no influence on employee job satisfaction.  (This hypothesis contends that providing flexible schedules does not affect how satisfied employees are with their jobs.)
  • Writing ability of a 7th grader is not affected by reading editorial example. ( There is no relationship between reading an  editorial example  and improving a 7th grader’s writing abilities.) 
  • The type of lighting in a room does not affect people’s mood.  (In this null hypothesis, there is no connection between the kind of lighting in a room and the mood of those present.)
  • The use of social media during break time does not impact productivity at work.  (This hypothesis proposes that social media usage during breaks has no effect on work productivity.)

As you learn how to write a hypothesis, remember that aiming for clarity, testability, and relevance to your research question is vital. By mastering this skill, you’re well on your way to conducting impactful scientific research. Good luck!

Importance of a Hypothesis in Research

A well-structured hypothesis is a vital part of any research project for several reasons:

  • It provides clear direction for the study by setting its focus and purpose.
  • It outlines expectations of the research, making it easier to measure results.
  • It helps identify any potential limitations in the study, allowing researchers to refine their approach.

In conclusion, a hypothesis plays a fundamental role in the research process. By understanding its concept and constructing a well-thought-out hypothesis, researchers lay the groundwork for a successful, scientifically sound investigation.

How to Write a Hypothesis?

Here are five steps that you can follow to write an effective hypothesis. 

Step 1: Identify Your Research Question

The first step in learning how to compose a hypothesis is to clearly define your research question. This question is the central focus of your study and will help you determine the direction of your hypothesis.

Step 2: Determine the Variables

When exploring how to write a hypothesis, it’s crucial to identify the variables involved in your study. You’ll need at least two variables:

  • Independent variable : The factor you manipulate or change in your experiment.
  • Dependent variable : The outcome or result you observe or measure, which is influenced by the independent variable.

Step 3: Build the Hypothetical Relationship

In understanding how to compose a hypothesis, constructing the relationship between the variables is key. Based on your research question and variables, predict the expected outcome or connection. This prediction should be specific, testable, and, if possible, expressed in the “If…then” format.

Step 4: Write the Null Hypothesis

When mastering how to write a hypothesis, it’s important to create a null hypothesis as well. The null hypothesis assumes no relationship or effect between the variables, acting as a counterpoint to your primary hypothesis.

Step 5: Review Your Hypothesis

Finally, when learning how to compose a hypothesis, it’s essential to review your hypothesis for clarity, testability, and relevance to your research question. Make any necessary adjustments to ensure it provides a solid basis for your study.

In conclusion, understanding how to write a hypothesis is crucial for conducting successful scientific research. By focusing on your research question and carefully building relationships between variables, you will lay a strong foundation for advancing research and knowledge in your field.

Hypothesis vs. Prediction: What’s the Difference?

Understanding the differences between a hypothesis and a prediction is crucial in scientific research. Often, these terms are used interchangeably, but they have distinct meanings and functions. This segment aims to clarify these differences and explain how to compose a hypothesis correctly, helping you improve the quality of your research projects.

Hypothesis: The Foundation of Your Research

A hypothesis is an educated guess about the relationship between two or more variables. It provides the basis for your research question and is a starting point for an experiment or observational study.

The critical elements for a hypothesis include:

  • Specificity: A clear and concise statement that describes the relationship between variables.
  • Testability: The ability to test the hypothesis through experimentation or observation.

To learn how to write a hypothesis, it’s essential to identify your research question first and then predict the relationship between the variables.

Prediction: The Expected Outcome

A prediction is a statement about a specific outcome you expect to see in your experiment or observational study. It’s derived from the hypothesis and provides a measurable way to test the relationship between variables.

Here’s an example of how to write a hypothesis and a related prediction:

  • Hypothesis: Consuming a high-sugar diet leads to weight gain.
  • Prediction: People who consume a high-sugar diet for six weeks will gain more weight than those who maintain a low-sugar diet during the same period.

Key Differences Between a Hypothesis and a Prediction

While a hypothesis and prediction are both essential components of scientific research, there are some key differences to keep in mind:

  • A hypothesis is an educated guess that suggests a relationship between variables, while a prediction is a specific and measurable outcome based on that hypothesis.
  • A hypothesis can give rise to multiple experiment or observational study predictions.

To conclude, understanding the differences between a hypothesis and a prediction, and learning how to write a hypothesis, are essential steps to form a robust foundation for your research. By creating clear, testable hypotheses along with specific, measurable predictions, you lay the groundwork for scientifically sound investigations.

Here’s a wrap-up for this guide on how to write a hypothesis. We’re confident this article was helpful for many of you. We understand that many students struggle with writing their school research . However, we hope to continue assisting you through our blog tutorial on writing different aspects of academic assignments.

For further information, you can check out our reverent blog or contact our professionals to avail amazing writing services. Paper perk experts tailor assignments to reflect your unique voice and perspectives. Our professionals make sure to stick around till your satisfaction. So what are you waiting for? Pick your required service and order away!

Get Your Custom Essay Writing Solution From Our Professional Essay Writer's

timely deliveries

Timely Deliveries

premium quality

Premium Quality

unlimited revisions

Unlimited Revisions

Calculate Your Order Price

Related blogs.

blog-img

Connections with Writers and support

safe service

Privacy and Confidentiality Guarantee

quality-score

Average Quality Score

How to Write a Research Hypothesis

  • Research Process
  • Peer Review

Since grade school, we've all been familiar with hypotheses. The hypothesis is an essential step of the scientific method. But what makes an effective research hypothesis, how do you create one, and what types of hypotheses are there? We answer these questions and more.

Updated on April 27, 2022

the word hypothesis being typed on white paper

What is a research hypothesis?

General hypothesis.

Since grade school, we've all been familiar with the term “hypothesis.” A hypothesis is a fact-based guess or prediction that has not been proven. It is an essential step of the scientific method. The hypothesis of a study is a drive for experimentation to either prove the hypothesis or dispute it.

Research Hypothesis

A research hypothesis is more specific than a general hypothesis. It is an educated, expected prediction of the outcome of a study that is testable.

What makes an effective research hypothesis?

A good research hypothesis is a clear statement of the relationship between a dependent variable(s) and independent variable(s) relevant to the study that can be disproven.

Research hypothesis checklist

Once you've written a possible hypothesis, make sure it checks the following boxes:

  • It must be testable: You need a means to prove your hypothesis. If you can't test it, it's not a hypothesis.
  • It must include a dependent and independent variable: At least one independent variable ( cause ) and one dependent variable ( effect ) must be included.
  • The language must be easy to understand: Be as clear and concise as possible. Nothing should be left to interpretation.
  • It must be relevant to your research topic: You probably shouldn't be talking about cats and dogs if your research topic is outer space. Stay relevant to your topic.

How to create an effective research hypothesis

Pose it as a question first.

Start your research hypothesis from a journalistic approach. Ask one of the five W's: Who, what, when, where, or why.

A possible initial question could be: Why is the sky blue?

Do the preliminary research

Once you have a question in mind, read research around your topic. Collect research from academic journals.

If you're looking for information about the sky and why it is blue, research information about the atmosphere, weather, space, the sun, etc.

Write a draft hypothesis

Once you're comfortable with your subject and have preliminary knowledge, create a working hypothesis. Don't stress much over this. Your first hypothesis is not permanent. Look at it as a draft.

Your first draft of a hypothesis could be: Certain molecules in the Earth's atmosphere are responsive to the sky being the color blue.

Make your working draft perfect

Take your working hypothesis and make it perfect. Narrow it down to include only the information listed in the “Research hypothesis checklist” above.

Now that you've written your working hypothesis, narrow it down. Your new hypothesis could be: Light from the sun hitting oxygen molecules in the sky makes the color of the sky appear blue.

Write a null hypothesis

Your null hypothesis should be the opposite of your research hypothesis. It should be able to be disproven by your research.

In this example, your null hypothesis would be: Light from the sun hitting oxygen molecules in the sky does not make the color of the sky appear blue.

Why is it important to have a clear, testable hypothesis?

One of the main reasons a manuscript can be rejected from a journal is because of a weak hypothesis. “Poor hypothesis, study design, methodology, and improper use of statistics are other reasons for rejection of a manuscript,” says Dr. Ish Kumar Dhammi and Dr. Rehan-Ul-Haq in Indian Journal of Orthopaedics.

According to Dr. James M. Provenzale in American Journal of Roentgenology , “The clear declaration of a research question (or hypothesis) in the Introduction is critical for reviewers to understand the intent of the research study. It is best to clearly state the study goal in plain language (for example, “We set out to determine whether condition x produces condition y.”) An insufficient problem statement is one of the more common reasons for manuscript rejection.”

Characteristics that make a hypothesis weak include:

  • Unclear variables
  • Unoriginality
  • Too general
  • Too specific

A weak hypothesis leads to weak research and methods . The goal of a paper is to prove or disprove a hypothesis - or to prove or disprove a null hypothesis. If the hypothesis is not a dependent variable of what is being studied, the paper's methods should come into question.

A strong hypothesis is essential to the scientific method. A hypothesis states an assumed relationship between at least two variables and the experiment then proves or disproves that relationship with statistical significance. Without a proven and reproducible relationship, the paper feeds into the reproducibility crisis. Learn more about writing for reproducibility .

In a study published in The Journal of Obstetrics and Gynecology of India by Dr. Suvarna Satish Khadilkar, she reviewed 400 rejected manuscripts to see why they were rejected. Her studies revealed that poor methodology was a top reason for the submission having a final disposition of rejection.

Aside from publication chances, Dr. Gareth Dyke believes a clear hypothesis helps efficiency.

“Developing a clear and testable hypothesis for your research project means that you will not waste time, energy, and money with your work,” said Dyke. “Refining a hypothesis that is both meaningful, interesting, attainable, and testable is the goal of all effective research.”

Types of research hypotheses

There can be overlap in these types of hypotheses.

Simple hypothesis

A simple hypothesis is a hypothesis at its most basic form. It shows the relationship of one independent and one independent variable.

Example: Drinking soda (independent variable) every day leads to obesity (dependent variable).

Complex hypothesis

A complex hypothesis shows the relationship of two or more independent and dependent variables.

Example: Drinking soda (independent variable) every day leads to obesity (dependent variable) and heart disease (dependent variable).

Directional hypothesis

A directional hypothesis guesses which way the results of an experiment will go. It uses words like increase, decrease, higher, lower, positive, negative, more, or less. It is also frequently used in statistics.

Example: Humans exposed to radiation have a higher risk of cancer than humans not exposed to radiation.

Non-directional hypothesis

A non-directional hypothesis says there will be an effect on the dependent variable, but it does not say which direction.

Associative hypothesis

An associative hypothesis says that when one variable changes, so does the other variable.

Alternative hypothesis

An alternative hypothesis states that the variables have a relationship.

  • The opposite of a null hypothesis

Example: An apple a day keeps the doctor away.

Null hypothesis

A null hypothesis states that there is no relationship between the two variables. It is posed as the opposite of what the alternative hypothesis states.

Researchers use a null hypothesis to work to be able to reject it. A null hypothesis:

  • Can never be proven
  • Can only be rejected
  • Is the opposite of an alternative hypothesis

Example: An apple a day does not keep the doctor away.

Logical hypothesis

A logical hypothesis is a suggested explanation while using limited evidence.

Example: Bats can navigate in the dark better than tigers.

In this hypothesis, the researcher knows that tigers cannot see in the dark, and bats mostly live in darkness.

Empirical hypothesis

An empirical hypothesis is also called a “working hypothesis.” It uses the trial and error method and changes around the independent variables.

  • An apple a day keeps the doctor away.
  • Two apples a day keep the doctor away.
  • Three apples a day keep the doctor away.

In this case, the research changes the hypothesis as the researcher learns more about his/her research.

Statistical hypothesis

A statistical hypothesis is a look of a part of a population or statistical model. This type of hypothesis is especially useful if you are making a statement about a large population. Instead of having to test the entire population of Illinois, you could just use a smaller sample of people who live there.

Example: 70% of people who live in Illinois are iron deficient.

Causal hypothesis

A causal hypothesis states that the independent variable will have an effect on the dependent variable.

Example: Using tobacco products causes cancer.

Final thoughts

Make sure your research is error-free before you send it to your preferred journal . Check our our English Editing services to avoid your chances of desk rejection.

Jonny Rhein, BA

Jonny Rhein, BA

See our "Privacy Policy"

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.34(45); 2019 Nov 25

Logo of jkms

Scientific Hypotheses: Writing, Promoting, and Predicting Implications

Armen yuri gasparyan.

1 Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK), Russells Hall Hospital, Dudley, West Midlands, UK.

Lilit Ayvazyan

2 Department of Medical Chemistry, Yerevan State Medical University, Yerevan, Armenia.

Ulzhan Mukanova

3 Department of Surgical Disciplines, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

Marlen Yessirkepov

4 Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

George D. Kitas

5 Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester, UK.

Scientific hypotheses are essential for progress in rapidly developing academic disciplines. Proposing new ideas and hypotheses require thorough analyses of evidence-based data and predictions of the implications. One of the main concerns relates to the ethical implications of the generated hypotheses. The authors may need to outline potential benefits and limitations of their suggestions and target widely visible publication outlets to ignite discussion by experts and start testing the hypotheses. Not many publication outlets are currently welcoming hypotheses and unconventional ideas that may open gates to criticism and conservative remarks. A few scholarly journals guide the authors on how to structure hypotheses. Reflecting on general and specific issues around the subject matter is often recommended for drafting a well-structured hypothesis article. An analysis of influential hypotheses, presented in this article, particularly Strachan's hygiene hypothesis with global implications in the field of immunology and allergy, points to the need for properly interpreting and testing new suggestions. Envisaging the ethical implications of the hypotheses should be considered both by authors and journal editors during the writing and publishing process.

INTRODUCTION

We live in times of digitization that radically changes scientific research, reporting, and publishing strategies. Researchers all over the world are overwhelmed with processing large volumes of information and searching through numerous online platforms, all of which make the whole process of scholarly analysis and synthesis complex and sophisticated.

Current research activities are diversifying to combine scientific observations with analysis of facts recorded by scholars from various professional backgrounds. 1 Citation analyses and networking on social media are also becoming essential for shaping research and publishing strategies globally. 2 Learning specifics of increasingly interdisciplinary research studies and acquiring information facilitation skills aid researchers in formulating innovative ideas and predicting developments in interrelated scientific fields.

Arguably, researchers are currently offered more opportunities than in the past for generating new ideas by performing their routine laboratory activities, observing individual cases and unusual developments, and critically analyzing published scientific facts. What they need at the start of their research is to formulate a scientific hypothesis that revisits conventional theories, real-world processes, and related evidence to propose new studies and test ideas in an ethical way. 3 Such a hypothesis can be of most benefit if published in an ethical journal with wide visibility and exposure to relevant online databases and promotion platforms.

Although hypotheses are crucially important for the scientific progress, only few highly skilled researchers formulate and eventually publish their innovative ideas per se . Understandably, in an increasingly competitive research environment, most authors would prefer to prioritize their ideas by discussing and conducting tests in their own laboratories or clinical departments, and publishing research reports afterwards. However, there are instances when simple observations and research studies in a single center are not capable of explaining and testing new groundbreaking ideas. Formulating hypothesis articles first and calling for multicenter and interdisciplinary research can be a solution in such instances, potentially launching influential scientific directions, if not academic disciplines.

The aim of this article is to overview the importance and implications of infrequently published scientific hypotheses that may open new avenues of thinking and research.

Despite the seemingly established views on innovative ideas and hypotheses as essential research tools, no structured definition exists to tag the term and systematically track related articles. In 1973, the Medical Subject Heading (MeSH) of the U.S. National Library of Medicine introduced “Research Design” as a structured keyword that referred to the importance of collecting data and properly testing hypotheses, and indirectly linked the term to ethics, methods and standards, among many other subheadings.

One of the experts in the field defines “hypothesis” as a well-argued analysis of available evidence to provide a realistic (scientific) explanation of existing facts, fill gaps in public understanding of sophisticated processes, and propose a new theory or a test. 4 A hypothesis can be proven wrong partially or entirely. However, even such an erroneous hypothesis may influence progress in science by initiating professional debates that help generate more realistic ideas. The main ethical requirement for hypothesis authors is to be honest about the limitations of their suggestions. 5

EXAMPLES OF INFLUENTIAL SCIENTIFIC HYPOTHESES

Daily routine in a research laboratory may lead to groundbreaking discoveries provided the daily accounts are comprehensively analyzed and reproduced by peers. The discovery of penicillin by Sir Alexander Fleming (1928) can be viewed as a prime example of such discoveries that introduced therapies to treat staphylococcal and streptococcal infections and modulate blood coagulation. 6 , 7 Penicillin got worldwide recognition due to the inventor's seminal works published by highly prestigious and widely visible British journals, effective ‘real-world’ antibiotic therapy of pneumonia and wounds during World War II, and euphoric media coverage. 8 In 1945, Fleming, Florey and Chain got a much deserved Nobel Prize in Physiology or Medicine for the discovery that led to the mass production of the wonder drug in the U.S. and ‘real-world practice’ that tested the use of penicillin. What remained globally unnoticed is that Zinaida Yermolyeva, the outstanding Soviet microbiologist, created the Soviet penicillin, which turned out to be more effective than the Anglo-American penicillin and entered mass production in 1943; that year marked the turning of the tide of the Great Patriotic War. 9 One of the reasons of the widely unnoticed discovery of Zinaida Yermolyeva is that her works were published exclusively by local Russian (Soviet) journals.

The past decades have been marked by an unprecedented growth of multicenter and global research studies involving hundreds and thousands of human subjects. This trend is shaped by an increasing number of reports on clinical trials and large cohort studies that create a strong evidence base for practice recommendations. Mega-studies may help generate and test large-scale hypotheses aiming to solve health issues globally. Properly designed epidemiological studies, for example, may introduce clarity to the hygiene hypothesis that was originally proposed by David Strachan in 1989. 10 David Strachan studied the epidemiology of hay fever in a cohort of 17,414 British children and concluded that declining family size and improved personal hygiene had reduced the chances of cross infections in families, resulting in epidemics of atopic disease in post-industrial Britain. Over the past four decades, several related hypotheses have been proposed to expand the potential role of symbiotic microorganisms and parasites in the development of human physiological immune responses early in life and protection from allergic and autoimmune diseases later on. 11 , 12 Given the popularity and the scientific importance of the hygiene hypothesis, it was introduced as a MeSH term in 2012. 13

Hypotheses can be proposed based on an analysis of recorded historic events that resulted in mass migrations and spreading of certain genetic diseases. As a prime example, familial Mediterranean fever (FMF), the prototype periodic fever syndrome, is believed to spread from Mesopotamia to the Mediterranean region and all over Europe due to migrations and religious prosecutions millennia ago. 14 Genetic mutations spearing mild clinical forms of FMF are hypothesized to emerge and persist in the Mediterranean region as protective factors against more serious infectious diseases, particularly tuberculosis, historically common in that part of the world. 15 The speculations over the advantages of carrying the MEditerranean FeVer (MEFV) gene are further strengthened by recorded low mortality rates from tuberculosis among FMF patients of different nationalities living in Tunisia in the first half of the 20th century. 16

Diagnostic hypotheses shedding light on peculiarities of diseases throughout the history of mankind can be formulated using artefacts, particularly historic paintings. 17 Such paintings may reveal joint deformities and disfigurements due to rheumatic diseases in individual subjects. A series of paintings with similar signs of pathological conditions interpreted in a historic context may uncover mysteries of epidemics of certain diseases, which is the case with Ruben's paintings depicting signs of rheumatic hands and making some doctors to believe that rheumatoid arthritis was common in Europe in the 16th and 17th century. 18

WRITING SCIENTIFIC HYPOTHESES

There are author instructions of a few journals that specifically guide how to structure, format, and make submissions categorized as hypotheses attractive. One of the examples is presented by Med Hypotheses , the flagship journal in its field with more than four decades of publishing and influencing hypothesis authors globally. However, such guidance is not based on widely discussed, implemented, and approved reporting standards, which are becoming mandatory for all scholarly journals.

Generating new ideas and scientific hypotheses is a sophisticated task since not all researchers and authors are skilled to plan, conduct, and interpret various research studies. Some experience with formulating focused research questions and strong working hypotheses of original research studies is definitely helpful for advancing critical appraisal skills. However, aspiring authors of scientific hypotheses may need something different, which is more related to discerning scientific facts, pooling homogenous data from primary research works, and synthesizing new information in a systematic way by analyzing similar sets of articles. To some extent, this activity is reminiscent of writing narrative and systematic reviews. As in the case of reviews, scientific hypotheses need to be formulated on the basis of comprehensive search strategies to retrieve all available studies on the topics of interest and then synthesize new information selectively referring to the most relevant items. One of the main differences between scientific hypothesis and review articles relates to the volume of supportive literature sources ( Table 1 ). In fact, hypothesis is usually formulated by referring to a few scientific facts or compelling evidence derived from a handful of literature sources. 19 By contrast, reviews require analyses of a large number of published documents retrieved from several well-organized and evidence-based databases in accordance with predefined search strategies. 20 , 21 , 22

The format of hypotheses, especially the implications part, may vary widely across disciplines. Clinicians may limit their suggestions to the clinical manifestations of diseases, outcomes, and management strategies. Basic and laboratory scientists analysing genetic, molecular, and biochemical mechanisms may need to view beyond the frames of their narrow fields and predict social and population-based implications of the proposed ideas. 23

Advanced writing skills are essential for presenting an interesting theoretical article which appeals to the global readership. Merely listing opposing facts and ideas, without proper interpretation and analysis, may distract the experienced readers. The essence of a great hypothesis is a story behind the scientific facts and evidence-based data.

ETHICAL IMPLICATIONS

The authors of hypotheses substantiate their arguments by referring to and discerning rational points from published articles that might be overlooked by others. Their arguments may contradict the established theories and practices, and pose global ethical issues, particularly when more or less efficient medical technologies and public health interventions are devalued. The ethical issues may arise primarily because of the careless references to articles with low priorities, inadequate and apparently unethical methodologies, and concealed reporting of negative results. 24 , 25

Misinterpretation and misunderstanding of the published ideas and scientific hypotheses may complicate the issue further. For example, Alexander Fleming, whose innovative ideas of penicillin use to kill susceptible bacteria saved millions of lives, warned of the consequences of uncontrolled prescription of the drug. The issue of antibiotic resistance had emerged within the first ten years of penicillin use on a global scale due to the overprescription that affected the efficacy of antibiotic therapies, with undesirable consequences for millions. 26

The misunderstanding of the hygiene hypothesis that primarily aimed to shed light on the role of the microbiome in allergic and autoimmune diseases resulted in decline of public confidence in hygiene with dire societal implications, forcing some experts to abandon the original idea. 27 , 28 Although that hypothesis is unrelated to the issue of vaccinations, the public misunderstanding has resulted in decline of vaccinations at a time of upsurge of old and new infections.

A number of ethical issues are posed by the denial of the viral (human immunodeficiency viruses; HIV) hypothesis of acquired Immune deficiency Syndrome (AIDS) by Peter Duesberg, who overviewed the links between illicit recreational drugs and antiretroviral therapies with AIDS and refuted the etiological role of HIV. 29 That controversial hypothesis was rejected by several journals, but was eventually published without external peer review at Med Hypotheses in 2010. The publication itself raised concerns of the unconventional editorial policy of the journal, causing major perturbations and more scrutinized publishing policies by journals processing hypotheses.

WHERE TO PUBLISH HYPOTHESES

Although scientific authors are currently well informed and equipped with search tools to draft evidence-based hypotheses, there are still limited quality publication outlets calling for related articles. The journal editors may be hesitant to publish articles that do not adhere to any research reporting guidelines and open gates for harsh criticism of unconventional and untested ideas. Occasionally, the editors opting for open-access publishing and upgrading their ethics regulations launch a section to selectively publish scientific hypotheses attractive to the experienced readers. 30 However, the absence of approved standards for this article type, particularly no mandate for outlining potential ethical implications, may lead to publication of potentially harmful ideas in an attractive format.

A suggestion of simultaneously publishing multiple or alternative hypotheses to balance the reader views and feedback is a potential solution for the mainstream scholarly journals. 31 However, that option alone is hardly applicable to emerging journals with unconventional quality checks and peer review, accumulating papers with multiple rejections by established journals.

A large group of experts view hypotheses with improbable and controversial ideas publishable after formal editorial (in-house) checks to preserve the authors' genuine ideas and avoid conservative amendments imposed by external peer reviewers. 32 That approach may be acceptable for established publishers with large teams of experienced editors. However, the same approach can lead to dire consequences if employed by nonselective start-up, open-access journals processing all types of articles and primarily accepting those with charged publication fees. 33 In fact, pseudoscientific ideas arguing Newton's and Einstein's seminal works or those denying climate change that are hardly testable have already found their niche in substandard electronic journals with soft or nonexistent peer review. 34

CITATIONS AND SOCIAL MEDIA ATTENTION

The available preliminary evidence points to the attractiveness of hypothesis articles for readers, particularly those from research-intensive countries who actively download related documents. 35 However, citations of such articles are disproportionately low. Only a small proportion of top-downloaded hypotheses (13%) in the highly prestigious Med Hypotheses receive on average 5 citations per article within a two-year window. 36

With the exception of a few historic papers, the vast majority of hypotheses attract relatively small number of citations in a long term. 36 Plausible explanations are that these articles often contain a single or only a few citable points and that suggested research studies to test hypotheses are rarely conducted and reported, limiting chances of citing and crediting authors of genuine research ideas.

A snapshot analysis of citation activity of hypothesis articles may reveal interest of the global scientific community towards their implications across various disciplines and countries. As a prime example, Strachan's hygiene hypothesis, published in 1989, 10 is still attracting numerous citations on Scopus, the largest bibliographic database. As of August 28, 2019, the number of the linked citations in the database is 3,201. Of the citing articles, 160 are cited at least 160 times ( h -index of this research topic = 160). The first three citations are recorded in 1992 and followed by a rapid annual increase in citation activity and a peak of 212 in 2015 ( Fig. 1 ). The top 5 sources of the citations are Clin Exp Allergy (n = 136), J Allergy Clin Immunol (n = 119), Allergy (n = 81), Pediatr Allergy Immunol (n = 69), and PLOS One (n = 44). The top 5 citing authors are leading experts in pediatrics and allergology Erika von Mutius (Munich, Germany, number of publications with the index citation = 30), Erika Isolauri (Turku, Finland, n = 27), Patrick G Holt (Subiaco, Australia, n = 25), David P. Strachan (London, UK, n = 23), and Bengt Björksten (Stockholm, Sweden, n = 22). The U.S. is the leading country in terms of citation activity with 809 related documents, followed by the UK (n = 494), Germany (n = 314), Australia (n = 211), and the Netherlands (n = 177). The largest proportion of citing documents are articles (n = 1,726, 54%), followed by reviews (n = 950, 29.7%), and book chapters (n = 213, 6.7%). The main subject areas of the citing items are medicine (n = 2,581, 51.7%), immunology and microbiology (n = 1,179, 23.6%), and biochemistry, genetics and molecular biology (n = 415, 8.3%).

An external file that holds a picture, illustration, etc.
Object name is jkms-34-e300-g001.jpg

Interestingly, a recent analysis of 111 publications related to Strachan's hygiene hypothesis, stating that the lack of exposure to infections in early life increases the risk of rhinitis, revealed a selection bias of 5,551 citations on Web of Science. 37 The articles supportive of the hypothesis were cited more than nonsupportive ones (odds ratio adjusted for study design, 2.2; 95% confidence interval, 1.6–3.1). A similar conclusion pointing to a citation bias distorting bibliometrics of hypotheses was reached by an earlier analysis of a citation network linked to the idea that β-amyloid, which is involved in the pathogenesis of Alzheimer disease, is produced by skeletal muscle of patients with inclusion body myositis. 38 The results of both studies are in line with the notion that ‘positive’ citations are more frequent in the field of biomedicine than ‘negative’ ones, and that citations to articles with proven hypotheses are too common. 39

Social media channels are playing an increasingly active role in the generation and evaluation of scientific hypotheses. In fact, publicly discussing research questions on platforms of news outlets, such as Reddit, may shape hypotheses on health-related issues of global importance, such as obesity. 40 Analyzing Twitter comments, researchers may reveal both potentially valuable ideas and unfounded claims that surround groundbreaking research ideas. 41 Social media activities, however, are unevenly distributed across different research topics, journals and countries, and these are not always objective professional reflections of the breakthroughs in science. 2 , 42

Scientific hypotheses are essential for progress in science and advances in healthcare. Innovative ideas should be based on a critical overview of related scientific facts and evidence-based data, often overlooked by others. To generate realistic hypothetical theories, the authors should comprehensively analyze the literature and suggest relevant and ethically sound design for future studies. They should also consider their hypotheses in the context of research and publication ethics norms acceptable for their target journals. The journal editors aiming to diversify their portfolio by maintaining and introducing hypotheses section are in a position to upgrade guidelines for related articles by pointing to general and specific analyses of the subject, preferred study designs to test hypotheses, and ethical implications. The latter is closely related to specifics of hypotheses. For example, editorial recommendations to outline benefits and risks of a new laboratory test or therapy may result in a more balanced article and minimize associated risks afterwards.

Not all scientific hypotheses have immediate positive effects. Some, if not most, are never tested in properly designed research studies and never cited in credible and indexed publication outlets. Hypotheses in specialized scientific fields, particularly those hardly understandable for nonexperts, lose their attractiveness for increasingly interdisciplinary audience. The authors' honest analysis of the benefits and limitations of their hypotheses and concerted efforts of all stakeholders in science communication to initiate public discussion on widely visible platforms and social media may reveal rational points and caveats of the new ideas.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Gasparyan AY, Yessirkepov M, Kitas GD.
  • Methodology: Gasparyan AY, Mukanova U, Ayvazyan L.
  • Writing - original draft: Gasparyan AY, Ayvazyan L, Yessirkepov M.
  • Writing - review & editing: Gasparyan AY, Yessirkepov M, Mukanova U, Kitas GD.

Writing an Introduction for a Scientific Paper

Dr. michelle harris, dr. janet batzli, biocore.

This section provides guidelines on how to construct a solid introduction to a scientific paper including background information, study question , biological rationale, hypothesis , and general approach . If the Introduction is done well, there should be no question in the reader’s mind why and on what basis you have posed a specific hypothesis.

Broad Question : based on an initial observation (e.g., “I see a lot of guppies close to the shore. Do guppies like living in shallow water?”). This observation of the natural world may inspire you to investigate background literature or your observation could be based on previous research by others or your own pilot study. Broad questions are not always included in your written text, but are essential for establishing the direction of your research.

Background Information : key issues, concepts, terminology, and definitions needed to understand the biological rationale for the experiment. It often includes a summary of findings from previous, relevant studies. Remember to cite references, be concise, and only include relevant information given your audience and your experimental design. Concisely summarized background information leads to the identification of specific scientific knowledge gaps that still exist. (e.g., “No studies to date have examined whether guppies do indeed spend more time in shallow water.”)

Testable Question : these questions are much more focused than the initial broad question, are specific to the knowledge gap identified, and can be addressed with data. (e.g., “Do guppies spend different amounts of time in water <1 meter deep as compared to their time in water that is >1 meter deep?”)

Biological Rationale : describes the purpose of your experiment distilling what is known and what is not known that defines the knowledge gap that you are addressing. The “BR” provides the logic for your hypothesis and experimental approach, describing the biological mechanism and assumptions that explain why your hypothesis should be true.

The biological rationale is based on your interpretation of the scientific literature, your personal observations, and the underlying assumptions you are making about how you think the system works. If you have written your biological rationale, your reader should see your hypothesis in your introduction section and say to themselves, “Of course, this hypothesis seems very logical based on the rationale presented.”

  • A thorough rationale defines your assumptions about the system that have not been revealed in scientific literature or from previous systematic observation. These assumptions drive the direction of your specific hypothesis or general predictions.
  • Defining the rationale is probably the most critical task for a writer, as it tells your reader why your research is biologically meaningful. It may help to think about the rationale as an answer to the questions— how is this investigation related to what we know, what assumptions am I making about what we don’t yet know, AND how will this experiment add to our knowledge? *There may or may not be broader implications for your study; be careful not to overstate these (see note on social justifications below).
  • Expect to spend time and mental effort on this. You may have to do considerable digging into the scientific literature to define how your experiment fits into what is already known and why it is relevant to pursue.
  • Be open to the possibility that as you work with and think about your data, you may develop a deeper, more accurate understanding of the experimental system. You may find the original rationale needs to be revised to reflect your new, more sophisticated understanding.
  • As you progress through Biocore and upper level biology courses, your rationale should become more focused and matched with the level of study e ., cellular, biochemical, or physiological mechanisms that underlie the rationale. Achieving this type of understanding takes effort, but it will lead to better communication of your science.

***Special note on avoiding social justifications: You should not overemphasize the relevance of your experiment and the possible connections to large-scale processes. Be realistic and logical —do not overgeneralize or state grand implications that are not sensible given the structure of your experimental system. Not all science is easily applied to improving the human condition. Performing an investigation just for the sake of adding to our scientific knowledge (“pure or basic science”) is just as important as applied science. In fact, basic science often provides the foundation for applied studies.

Hypothesis / Predictions : specific prediction(s) that you will test during your experiment. For manipulative experiments, the hypothesis should include the independent variable (what you manipulate), the dependent variable(s) (what you measure), the organism or system , the direction of your results, and comparison to be made.

If you are doing a systematic observation , your hypothesis presents a variable or set of variables that you predict are important for helping you characterize the system as a whole, or predict differences between components/areas of the system that help you explain how the system functions or changes over time.

Experimental Approach : Briefly gives the reader a general sense of the experiment, the type of data it will yield, and the kind of conclusions you expect to obtain from the data. Do not confuse the experimental approach with the experimental protocol . The experimental protocol consists of the detailed step-by-step procedures and techniques used during the experiment that are to be reported in the Methods and Materials section.

Some Final Tips on Writing an Introduction

  • As you progress through the Biocore sequence, for instance, from organismal level of Biocore 301/302 to the cellular level in Biocore 303/304, we expect the contents of your “Introduction” paragraphs to reflect the level of your coursework and previous writing experience. For example, in Biocore 304 (Cell Biology Lab) biological rationale should draw upon assumptions we are making about cellular and biochemical processes.
  • Be Concise yet Specific: Remember to be concise and only include relevant information given your audience and your experimental design. As you write, keep asking, “Is this necessary information or is this irrelevant detail?” For example, if you are writing a paper claiming that a certain compound is a competitive inhibitor to the enzyme alkaline phosphatase and acts by binding to the active site, you need to explain (briefly) Michaelis-Menton kinetics and the meaning and significance of Km and Vmax. This explanation is not necessary if you are reporting the dependence of enzyme activity on pH because you do not need to measure Km and Vmax to get an estimate of enzyme activity.
  • Another example: if you are writing a paper reporting an increase in Daphnia magna heart rate upon exposure to caffeine you need not describe the reproductive cycle of magna unless it is germane to your results and discussion. Be specific and concrete, especially when making introductory or summary statements.

Where Do You Discuss Pilot Studies? Many times it is important to do pilot studies to help you get familiar with your experimental system or to improve your experimental design. If your pilot study influences your biological rationale or hypothesis, you need to describe it in your Introduction. If your pilot study simply informs the logistics or techniques, but does not influence your rationale, then the description of your pilot study belongs in the Materials and Methods section.  

How will introductions be evaluated? The following is part of the rubric we will be using to evaluate your papers.

Banner

HOW TO: Use Articles for Research: Introduction: Hypothesis/Thesis

  • What's a Scholarly Journal?
  • Reading the Citation
  • Authors' Credentials
  • Introduction: Hypothesis/Thesis
  • Literature Review
  • Research Method
  • Results/Data
  • Discussion/Conclusions

Hypothesis or Thesis

The first few paragraphs of a journal article serve to introduce the topic, to provide the author's hypothesis or thesis, and to indicate why the research was done.  A thesis or hypothesis is not always clearly labled; you may need to read through the introductory paragraphs to determine what the authors are proposing.

  • << Previous: Abstract
  • Next: Literature Review >>
  • Last Updated: Jan 29, 2024 3:35 PM
  • URL: https://libguides.cayuga-cc.edu/1ST-PRIORITY/articles

How to Write a Good Hypothesis in a Research Paper

What is a hypothesis in a research paper.

Every research has many parts, but its vital part is the proper hypothesis construction. A hypothesis represents a question, which includes an expected or predicted research result. When there’s no hypothesis, the base for an experiment or research is missing. With that said, it’s essential to carefully build the hypothesis. Such writing projects require patience, thoroughness, and persistence. Here, you’ll learn what is a hypothesis in research and how to write a hypothesis for a research paper and construct it clearly.

Characteristics of a Great Hypothesis

When you start learning how to write hypothesis, it’s crucial to understand what makes it good.

  • It should be concise, precise, and clear
  • It should be testable
  • It should be focused on one problem only
  • All great hypotheses aren’t contradictory
  • It should be stated simply and clearly. That way, everyone can understand it with ease.

Characteristics of a Great Hypothesis

All this may sound too complex. At the start, everything seems complicated and confusing. But most beginnings are like that. Learning other things, including writing an  appendix for a research paper are tricky, but once you get into it, it becomes easier. Learning new things, especially of scientific nature, requires effort and patience.

Before you start working on hypotheses, there’re several questions every researcher should ask, including:

  • Is the language used for the scientific reports clear?
  • How can the thesis be tested? In what ways?
  • Which explanations should be explored?
  • Does the theory include different variables, dependent and independent?
  • Is the idea in conflict with any nature laws?

Every question is equally important. These point to the complexity of the work. For many students, a scientific study is too complicated, more complex than learning how to write a  method section for a research paper or learning how to conclude a subject. But diving into it often turns into a fun journey.

Make sure to provide answers for all the above. If something is missing or doesn’t seem suitable, it means you’ll have to make appropriate changes.

General Types of the Research Hypothesis

There’re several general hypothesis types to explore, and those are:

  • Simple — This type foresees the relation between a single independent variable and a dependent one.
  • Complex — Focuses on foreseeing the connection between two or more independent variables and two or more dependent ones.
  • Directional — It focuses on giving an explanation of the expected outcome direction.
  • Non-directional — It doesn’t explain the expected direction of the result.
  • Associative — It points out how the change in one of the variables affects the other.
  • Causal — It shows how the manipulation of an independent variable affects the dependent one.
  • Null — It points out there’s no relation between variables.
  • Alternative — It shows the relationship between variables and identifies the expected research result.

Learning how to distinguish all these types takes time. With proper understanding, the entire study becomes easier. However, some students turn to professional help, and you can do the same — simply buy your research paper online because experienced researchers create them. These researchers possess the knowledge and skills to deliver exceptional work.

Keep in mind that one theory can fall into one of the types mentioned above or into several types. All the definitions previously listed are created to be simple and understandable for beginners.

Main Steps: How to Write the Hypothesis Section of a Research Paper

Here’re the footsteps on how to write a hypothesis in a research paper that you should follow:

  • First, ask a  question , for example: “How does exercise affect sleep?”
  • Start collecting data — take experiments, conduct interviews, and explore academic journals. Gather information from many sources and different sides.
  • Create the answer to the previously asked question: “Exercise decreases insomnia, along with other sleep issues and complaints, and its effects are similar to results sleeping pills are providing.”
  • Create the hypothesis — It should include variables, outcomes, and who or what is studied. “If a person regularly exercises, they will have better sleep quality and sleep complaints will reduce.”
  • Clarify the hypothesis by exploring the difference or connection between the two groups.
  • Null hypothesis creation — Finally, formulate a hypothesis — null (that points out there’s no evidence that supports differences) or alternative (showing proof there’re differences).

The process is complex and requires time, effort, and exploration. It’s tricky even for experienced people. That is why many students turn to  custom writing service where professionals provide all the work at affordable prices, following the format and other requirements of scientific research.

When you start working on your assignment, ensure to follow all the steps we’ve listed. That way, you’ll ensure nothing is missing.

How to Create a Strong Hypothesis for the Research Paper?

Creating a solid hypothesis requires several things, and those are:

  • First, state the issue — the topic needs to be clearly defined.
  • If possible, use the statement that has the If and Then components. In other words, if some specific action is taking place, then the particular result is anticipated.
  • Variables need to be detected. In the example above, the variables are exercise and sleep.

Learning how to write a null hypothesis in a research paper isn’t easy. There’re many parts to understand, but carefully following a  guide to writing a research paper can be very helpful. Give yourself time and be patient until you figure it out.

As you may notice, there are a couple of crucial steps to follow. One of the key factors is to follow the guide and ensure that you are clear and concise.

Hypothesis Examples

Before you start working on study articles, here’re some hypothesis samples that’ll help you get a better understanding of how things work:

  • Brushing the teeth every day prevents the formation of cavities.
  • Eating broccoli and berries boosts the metabolism.
  • Students that don’t skip breakfast perform better in school than those who do skip breakfast.
  • When fertilizing the garden, the plants will grow more quicker.
  • When taking adequate breaks, employees’ work performance increases.

When you don’t have enough time for a proper study and data collection, there’s an option to  pay for writing a research paper that many students use, even the top researchers. Everyone needs a break at times. Plus, these services are affordable and tailored to match the budget of a student.

We’ve created the examples above so every student that is new to this type of work can get familiar with the basics. At first glance, getting it all seems like a lot. But as you keep exploring the examples, things will get easier.

All researches require a lot of effort, especially when you are a beginner. Creating a hypothesis and developing an entire essay about a particular question isn’t always easy. You have a lot of analysis in front of you, some experiments, data collection, and more. Even though a tremendous amount of work is required, completing statistical analysis and the project altogether is pretty fun. Remember, if you are busy, professionals can do it for you.

Related posts:

  • Persuasive Essay: a Comprehensive Guide & Help Source
  • How to Write a News Story
  • How to Write an Autobiography Essay: Guide for College Students
  • A Foolproof Guide to Creating a Causal Analysis Essay

Improve your writing with our guides

How to Write a Scholarship Essay

How to Write a Scholarship Essay

Definition Essay: The Complete Guide with Essay Topics and Examples

Definition Essay: The Complete Guide with Essay Topics and Examples

Critical Essay: The Complete Guide. Essay Topics, Examples and Outlines

Critical Essay: The Complete Guide. Essay Topics, Examples and Outlines

Get 15% off your first order with edusson.

Connect with a professional writer within minutes by placing your first order. No matter the subject, difficulty, academic level or document type, our writers have the skills to complete it.

100% privacy. No spam ever.

how to include a hypothesis in a research paper

Research Hypothesis In Psychology: Types, & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, Ph.D., is a qualified psychology teacher with over 18 years experience of working in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

Print Friendly, PDF & Email

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Null and Alternative Hypotheses | Definitions & Examples

Null & Alternative Hypotheses | Definitions, Templates & Examples

Published on May 6, 2022 by Shaun Turney . Revised on June 22, 2023.

The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test :

  • Null hypothesis ( H 0 ): There’s no effect in the population .
  • Alternative hypothesis ( H a or H 1 ) : There’s an effect in the population.

Table of contents

Answering your research question with hypotheses, what is a null hypothesis, what is an alternative hypothesis, similarities and differences between null and alternative hypotheses, how to write null and alternative hypotheses, other interesting articles, frequently asked questions.

The null and alternative hypotheses offer competing answers to your research question . When the research question asks “Does the independent variable affect the dependent variable?”:

  • The null hypothesis ( H 0 ) answers “No, there’s no effect in the population.”
  • The alternative hypothesis ( H a ) answers “Yes, there is an effect in the population.”

The null and alternative are always claims about the population. That’s because the goal of hypothesis testing is to make inferences about a population based on a sample . Often, we infer whether there’s an effect in the population by looking at differences between groups or relationships between variables in the sample. It’s critical for your research to write strong hypotheses .

You can use a statistical test to decide whether the evidence favors the null or alternative hypothesis. Each type of statistical test comes with a specific way of phrasing the null and alternative hypothesis. However, the hypotheses can also be phrased in a general way that applies to any test.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

how to include a hypothesis in a research paper

The null hypothesis is the claim that there’s no effect in the population.

If the sample provides enough evidence against the claim that there’s no effect in the population ( p ≤ α), then we can reject the null hypothesis . Otherwise, we fail to reject the null hypothesis.

Although “fail to reject” may sound awkward, it’s the only wording that statisticians accept . Be careful not to say you “prove” or “accept” the null hypothesis.

Null hypotheses often include phrases such as “no effect,” “no difference,” or “no relationship.” When written in mathematical terms, they always include an equality (usually =, but sometimes ≥ or ≤).

You can never know with complete certainty whether there is an effect in the population. Some percentage of the time, your inference about the population will be incorrect. When you incorrectly reject the null hypothesis, it’s called a type I error . When you incorrectly fail to reject it, it’s a type II error.

Examples of null hypotheses

The table below gives examples of research questions and null hypotheses. There’s always more than one way to answer a research question, but these null hypotheses can help you get started.

*Note that some researchers prefer to always write the null hypothesis in terms of “no effect” and “=”. It would be fine to say that daily meditation has no effect on the incidence of depression and p 1 = p 2 .

The alternative hypothesis ( H a ) is the other answer to your research question . It claims that there’s an effect in the population.

Often, your alternative hypothesis is the same as your research hypothesis. In other words, it’s the claim that you expect or hope will be true.

The alternative hypothesis is the complement to the null hypothesis. Null and alternative hypotheses are exhaustive, meaning that together they cover every possible outcome. They are also mutually exclusive, meaning that only one can be true at a time.

Alternative hypotheses often include phrases such as “an effect,” “a difference,” or “a relationship.” When alternative hypotheses are written in mathematical terms, they always include an inequality (usually ≠, but sometimes < or >). As with null hypotheses, there are many acceptable ways to phrase an alternative hypothesis.

Examples of alternative hypotheses

The table below gives examples of research questions and alternative hypotheses to help you get started with formulating your own.

Null and alternative hypotheses are similar in some ways:

  • They’re both answers to the research question.
  • They both make claims about the population.
  • They’re both evaluated by statistical tests.

However, there are important differences between the two types of hypotheses, summarized in the following table.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

To help you write your hypotheses, you can use the template sentences below. If you know which statistical test you’re going to use, you can use the test-specific template sentences. Otherwise, you can use the general template sentences.

General template sentences

The only thing you need to know to use these general template sentences are your dependent and independent variables. To write your research question, null hypothesis, and alternative hypothesis, fill in the following sentences with your variables:

Does independent variable affect dependent variable ?

  • Null hypothesis ( H 0 ): Independent variable does not affect dependent variable.
  • Alternative hypothesis ( H a ): Independent variable affects dependent variable.

Test-specific template sentences

Once you know the statistical test you’ll be using, you can write your hypotheses in a more precise and mathematical way specific to the test you chose. The table below provides template sentences for common statistical tests.

Note: The template sentences above assume that you’re performing one-tailed tests . One-tailed tests are appropriate for most studies.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

The null hypothesis is often abbreviated as H 0 . When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤).

The alternative hypothesis is often abbreviated as H a or H 1 . When the alternative hypothesis is written using mathematical symbols, it always includes an inequality symbol (usually ≠, but sometimes < or >).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (“ x affects y because …”).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses . In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Turney, S. (2023, June 22). Null & Alternative Hypotheses | Definitions, Templates & Examples. Scribbr. Retrieved February 22, 2024, from https://www.scribbr.com/statistics/null-and-alternative-hypotheses/

Is this article helpful?

Shaun Turney

Shaun Turney

Other students also liked, inferential statistics | an easy introduction & examples, hypothesis testing | a step-by-step guide with easy examples, type i & type ii errors | differences, examples, visualizations, what is your plagiarism score.

  • Systematic review
  • Open access
  • Published: 19 February 2024

‘It depends’: what 86 systematic reviews tell us about what strategies to use to support the use of research in clinical practice

  • Annette Boaz   ORCID: orcid.org/0000-0003-0557-1294 1 ,
  • Juan Baeza 2 ,
  • Alec Fraser   ORCID: orcid.org/0000-0003-1121-1551 2 &
  • Erik Persson 3  

Implementation Science volume  19 , Article number:  15 ( 2024 ) Cite this article

990 Accesses

55 Altmetric

Metrics details

The gap between research findings and clinical practice is well documented and a range of strategies have been developed to support the implementation of research into clinical practice. The objective of this study was to update and extend two previous reviews of systematic reviews of strategies designed to implement research evidence into clinical practice.

We developed a comprehensive systematic literature search strategy based on the terms used in the previous reviews to identify studies that looked explicitly at interventions designed to turn research evidence into practice. The search was performed in June 2022 in four electronic databases: Medline, Embase, Cochrane and Epistemonikos. We searched from January 2010 up to June 2022 and applied no language restrictions. Two independent reviewers appraised the quality of included studies using a quality assessment checklist. To reduce the risk of bias, papers were excluded following discussion between all members of the team. Data were synthesised using descriptive and narrative techniques to identify themes and patterns linked to intervention strategies, targeted behaviours, study settings and study outcomes.

We identified 32 reviews conducted between 2010 and 2022. The reviews are mainly of multi-faceted interventions ( n  = 20) although there are reviews focusing on single strategies (ICT, educational, reminders, local opinion leaders, audit and feedback, social media and toolkits). The majority of reviews report strategies achieving small impacts (normally on processes of care). There is much less evidence that these strategies have shifted patient outcomes. Furthermore, a lot of nuance lies behind these headline findings, and this is increasingly commented upon in the reviews themselves.

Combined with the two previous reviews, 86 systematic reviews of strategies to increase the implementation of research into clinical practice have been identified. We need to shift the emphasis away from isolating individual and multi-faceted interventions to better understanding and building more situated, relational and organisational capability to support the use of research in clinical practice. This will involve drawing on a wider range of research perspectives (including social science) in primary studies and diversifying the types of synthesis undertaken to include approaches such as realist synthesis which facilitate exploration of the context in which strategies are employed.

Peer Review reports

Contribution to the literature

Considerable time and money is invested in implementing and evaluating strategies to increase the implementation of research into clinical practice.

The growing body of evidence is not providing the anticipated clear lessons to support improved implementation.

Instead what is needed is better understanding and building more situated, relational and organisational capability to support the use of research in clinical practice.

This would involve a more central role in implementation science for a wider range of perspectives, especially from the social, economic, political and behavioural sciences and for greater use of different types of synthesis, such as realist synthesis.

Introduction

The gap between research findings and clinical practice is well documented and a range of interventions has been developed to increase the implementation of research into clinical practice [ 1 , 2 ]. In recent years researchers have worked to improve the consistency in the ways in which these interventions (often called strategies) are described to support their evaluation. One notable development has been the emergence of Implementation Science as a field focusing explicitly on “the scientific study of methods to promote the systematic uptake of research findings and other evidence-based practices into routine practice” ([ 3 ] p. 1). The work of implementation science focuses on closing, or at least narrowing, the gap between research and practice. One contribution has been to map existing interventions, identifying 73 discreet strategies to support research implementation [ 4 ] which have been grouped into 9 clusters [ 5 ]. The authors note that they have not considered the evidence of effectiveness of the individual strategies and that a next step is to understand better which strategies perform best in which combinations and for what purposes [ 4 ]. Other authors have noted that there is also scope to learn more from other related fields of study such as policy implementation [ 6 ] and to draw on methods designed to support the evaluation of complex interventions [ 7 ].

The increase in activity designed to support the implementation of research into practice and improvements in reporting provided the impetus for an update of a review of systematic reviews of the effectiveness of interventions designed to support the use of research in clinical practice [ 8 ] which was itself an update of the review conducted by Grimshaw and colleagues in 2001. The 2001 review [ 9 ] identified 41 reviews considering a range of strategies including educational interventions, audit and feedback, computerised decision support to financial incentives and combined interventions. The authors concluded that all the interventions had the potential to promote the uptake of evidence in practice, although no one intervention seemed to be more effective than the others in all settings. They concluded that combined interventions were more likely to be effective than single interventions. The 2011 review identified a further 13 systematic reviews containing 313 discrete primary studies. Consistent with the previous review, four main strategy types were identified: audit and feedback; computerised decision support; opinion leaders; and multi-faceted interventions (MFIs). Nine of the reviews reported on MFIs. The review highlighted the small effects of single interventions such as audit and feedback, computerised decision support and opinion leaders. MFIs claimed an improvement in effectiveness over single interventions, although effect sizes remained small to moderate and this improvement in effectiveness relating to MFIs has been questioned in a subsequent review [ 10 ]. In updating the review, we anticipated a larger pool of reviews and an opportunity to consolidate learning from more recent systematic reviews of interventions.

This review updates and extends our previous review of systematic reviews of interventions designed to implement research evidence into clinical practice. To identify potentially relevant peer-reviewed research papers, we developed a comprehensive systematic literature search strategy based on the terms used in the Grimshaw et al. [ 9 ] and Boaz, Baeza and Fraser [ 8 ] overview articles. To ensure optimal retrieval, our search strategy was refined with support from an expert university librarian, considering the ongoing improvements in the development of search filters for systematic reviews since our first review [ 11 ]. We also wanted to include technology-related terms (e.g. apps, algorithms, machine learning, artificial intelligence) to find studies that explored interventions based on the use of technological innovations as mechanistic tools for increasing the use of evidence into practice (see Additional file 1 : Appendix A for full search strategy).

The search was performed in June 2022 in the following electronic databases: Medline, Embase, Cochrane and Epistemonikos. We searched for articles published since the 2011 review. We searched from January 2010 up to June 2022 and applied no language restrictions. Reference lists of relevant papers were also examined.

We uploaded the results using EPPI-Reviewer, a web-based tool that facilitated semi-automation of the screening process and removal of duplicate studies. We made particular use of a priority screening function to reduce screening workload and avoid ‘data deluge’ [ 12 ]. Through machine learning, one reviewer screened a smaller number of records ( n  = 1200) to train the software to predict whether a given record was more likely to be relevant or irrelevant, thus pulling the relevant studies towards the beginning of the screening process. This automation did not replace manual work but helped the reviewer to identify eligible studies more quickly. During the selection process, we included studies that looked explicitly at interventions designed to turn research evidence into practice. Studies were included if they met the following pre-determined inclusion criteria:

The study was a systematic review

Search terms were included

Focused on the implementation of research evidence into practice

The methodological quality of the included studies was assessed as part of the review

Study populations included healthcare providers and patients. The EPOC taxonomy [ 13 ] was used to categorise the strategies. The EPOC taxonomy has four domains: delivery arrangements, financial arrangements, governance arrangements and implementation strategies. The implementation strategies domain includes 20 strategies targeted at healthcare workers. Numerous EPOC strategies were assessed in the review including educational strategies, local opinion leaders, reminders, ICT-focused approaches and audit and feedback. Some strategies that did not fit easily within the EPOC categories were also included. These were social media strategies and toolkits, and multi-faceted interventions (MFIs) (see Table  2 ). Some systematic reviews included comparisons of different interventions while other reviews compared one type of intervention against a control group. Outcomes related to improvements in health care processes or patient well-being. Numerous individual study types (RCT, CCT, BA, ITS) were included within the systematic reviews.

We excluded papers that:

Focused on changing patient rather than provider behaviour

Had no demonstrable outcomes

Made unclear or no reference to research evidence

The last of these criteria was sometimes difficult to judge, and there was considerable discussion amongst the research team as to whether the link between research evidence and practice was sufficiently explicit in the interventions analysed. As we discussed in the previous review [ 8 ] in the field of healthcare, the principle of evidence-based practice is widely acknowledged and tools to change behaviour such as guidelines are often seen to be an implicit codification of evidence, despite the fact that this is not always the case.

Reviewers employed a two-stage process to select papers for inclusion. First, all titles and abstracts were screened by one reviewer to determine whether the study met the inclusion criteria. Two papers [ 14 , 15 ] were identified that fell just before the 2010 cut-off. As they were not identified in the searches for the first review [ 8 ] they were included and progressed to assessment. Each paper was rated as include, exclude or maybe. The full texts of 111 relevant papers were assessed independently by at least two authors. To reduce the risk of bias, papers were excluded following discussion between all members of the team. 32 papers met the inclusion criteria and proceeded to data extraction. The study selection procedure is documented in a PRISMA literature flow diagram (see Fig.  1 ). We were able to include French, Spanish and Portuguese papers in the selection reflecting the language skills in the study team, but none of the papers identified met the inclusion criteria. Other non- English language papers were excluded.

figure 1

PRISMA flow diagram. Source: authors

One reviewer extracted data on strategy type, number of included studies, local, target population, effectiveness and scope of impact from the included studies. Two reviewers then independently read each paper and noted key findings and broad themes of interest which were then discussed amongst the wider authorial team. Two independent reviewers appraised the quality of included studies using a Quality Assessment Checklist based on Oxman and Guyatt [ 16 ] and Francke et al. [ 17 ]. Each study was rated a quality score ranging from 1 (extensive flaws) to 7 (minimal flaws) (see Additional file 2 : Appendix B). All disagreements were resolved through discussion. Studies were not excluded in this updated overview based on methodological quality as we aimed to reflect the full extent of current research into this topic.

The extracted data were synthesised using descriptive and narrative techniques to identify themes and patterns in the data linked to intervention strategies, targeted behaviours, study settings and study outcomes.

Thirty-two studies were included in the systematic review. Table 1. provides a detailed overview of the included systematic reviews comprising reference, strategy type, quality score, number of included studies, local, target population, effectiveness and scope of impact (see Table  1. at the end of the manuscript). Overall, the quality of the studies was high. Twenty-three studies scored 7, six studies scored 6, one study scored 5, one study scored 4 and one study scored 3. The primary focus of the review was on reviews of effectiveness studies, but a small number of reviews did include data from a wider range of methods including qualitative studies which added to the analysis in the papers [ 18 , 19 , 20 , 21 ]. The majority of reviews report strategies achieving small impacts (normally on processes of care). There is much less evidence that these strategies have shifted patient outcomes. In this section, we discuss the different EPOC-defined implementation strategies in turn. Interestingly, we found only two ‘new’ approaches in this review that did not fit into the existing EPOC approaches. These are a review focused on the use of social media and a review considering toolkits. In addition to single interventions, we also discuss multi-faceted interventions. These were the most common intervention approach overall. A summary is provided in Table  2 .

Educational strategies

The overview identified three systematic reviews focusing on educational strategies. Grudniewicz et al. [ 22 ] explored the effectiveness of printed educational materials on primary care physician knowledge, behaviour and patient outcomes and concluded they were not effective in any of these aspects. Koota, Kääriäinen and Melender [ 23 ] focused on educational interventions promoting evidence-based practice among emergency room/accident and emergency nurses and found that interventions involving face-to-face contact led to significant or highly significant effects on patient benefits and emergency nurses’ knowledge, skills and behaviour. Interventions using written self-directed learning materials also led to significant improvements in nurses’ knowledge of evidence-based practice. Although the quality of the studies was high, the review primarily included small studies with low response rates, and many of them relied on self-assessed outcomes; consequently, the strength of the evidence for these outcomes is modest. Wu et al. [ 20 ] questioned if educational interventions aimed at nurses to support the implementation of evidence-based practice improve patient outcomes. Although based on evaluation projects and qualitative data, their results also suggest that positive changes on patient outcomes can be made following the implementation of specific evidence-based approaches (or projects). The differing positive outcomes for educational strategies aimed at nurses might indicate that the target audience is important.

Local opinion leaders

Flodgren et al. [ 24 ] was the only systemic review focusing solely on opinion leaders. The review found that local opinion leaders alone, or in combination with other interventions, can be effective in promoting evidence‐based practice, but this varies both within and between studies and the effect on patient outcomes is uncertain. The review found that, overall, any intervention involving opinion leaders probably improves healthcare professionals’ compliance with evidence-based practice but varies within and across studies. However, how opinion leaders had an impact could not be determined because of insufficient details were provided, illustrating that reporting specific details in published studies is important if diffusion of effective methods of increasing evidence-based practice is to be spread across a system. The usefulness of this review is questionable because it cannot provide evidence of what is an effective opinion leader, whether teams of opinion leaders or a single opinion leader are most effective, or the most effective methods used by opinion leaders.

Pantoja et al. [ 26 ] was the only systemic review focusing solely on manually generated reminders delivered on paper included in the overview. The review explored how these affected professional practice and patient outcomes. The review concluded that manually generated reminders delivered on paper as a single intervention probably led to small to moderate increases in adherence to clinical recommendations, and they could be used as a single quality improvement intervention. However, the authors indicated that this intervention would make little or no difference to patient outcomes. The authors state that such a low-tech intervention may be useful in low- and middle-income countries where paper records are more likely to be the norm.

ICT-focused approaches

The three ICT-focused reviews [ 14 , 27 , 28 ] showed mixed results. Jamal, McKenzie and Clark [ 14 ] explored the impact of health information technology on the quality of medical and health care. They examined the impact of electronic health record, computerised provider order-entry, or decision support system. This showed a positive improvement in adherence to evidence-based guidelines but not to patient outcomes. The number of studies included in the review was low and so a conclusive recommendation could not be reached based on this review. Similarly, Brown et al. [ 28 ] found that technology-enabled knowledge translation interventions may improve knowledge of health professionals, but all eight studies raised concerns of bias. The De Angelis et al. [ 27 ] review was more promising, reporting that ICT can be a good way of disseminating clinical practice guidelines but conclude that it is unclear which type of ICT method is the most effective.

Audit and feedback

Sykes, McAnuff and Kolehmainen [ 29 ] examined whether audit and feedback were effective in dementia care and concluded that it remains unclear which ingredients of audit and feedback are successful as the reviewed papers illustrated large variations in the effectiveness of interventions using audit and feedback.

Non-EPOC listed strategies: social media, toolkits

There were two new (non-EPOC listed) intervention types identified in this review compared to the 2011 review — fewer than anticipated. We categorised a third — ‘care bundles’ [ 36 ] as a multi-faceted intervention due to its description in practice and a fourth — ‘Technology Enhanced Knowledge Transfer’ [ 28 ] was classified as an ICT-focused approach. The first new strategy was identified in Bhatt et al.’s [ 30 ] systematic review of the use of social media for the dissemination of clinical practice guidelines. They reported that the use of social media resulted in a significant improvement in knowledge and compliance with evidence-based guidelines compared with more traditional methods. They noted that a wide selection of different healthcare professionals and patients engaged with this type of social media and its global reach may be significant for low- and middle-income countries. This review was also noteworthy for developing a simple stepwise method for using social media for the dissemination of clinical practice guidelines. However, it is debatable whether social media can be classified as an intervention or just a different way of delivering an intervention. For example, the review discussed involving opinion leaders and patient advocates through social media. However, this was a small review that included only five studies, so further research in this new area is needed. Yamada et al. [ 31 ] draw on 39 studies to explore the application of toolkits, 18 of which had toolkits embedded within larger KT interventions, and 21 of which evaluated toolkits as standalone interventions. The individual component strategies of the toolkits were highly variable though the authors suggest that they align most closely with educational strategies. The authors conclude that toolkits as either standalone strategies or as part of MFIs hold some promise for facilitating evidence use in practice but caution that the quality of many of the primary studies included is considered weak limiting these findings.

Multi-faceted interventions

The majority of the systematic reviews ( n  = 20) reported on more than one intervention type. Some of these systematic reviews focus exclusively on multi-faceted interventions, whilst others compare different single or combined interventions aimed at achieving similar outcomes in particular settings. While these two approaches are often described in a similar way, they are actually quite distinct from each other as the former report how multiple strategies may be strategically combined in pursuance of an agreed goal, whilst the latter report how different strategies may be incidentally used in sometimes contrasting settings in the pursuance of similar goals. Ariyo et al. [ 35 ] helpfully summarise five key elements often found in effective MFI strategies in LMICs — but which may also be transferrable to HICs. First, effective MFIs encourage a multi-disciplinary approach acknowledging the roles played by different professional groups to collectively incorporate evidence-informed practice. Second, they utilise leadership drawing on a wide set of clinical and non-clinical actors including managers and even government officials. Third, multiple types of educational practices are utilised — including input from patients as stakeholders in some cases. Fourth, protocols, checklists and bundles are used — most effectively when local ownership is encouraged. Finally, most MFIs included an emphasis on monitoring and evaluation [ 35 ]. In contrast, other studies offer little information about the nature of the different MFI components of included studies which makes it difficult to extrapolate much learning from them in relation to why or how MFIs might affect practice (e.g. [ 28 , 38 ]). Ultimately, context matters, which some review authors argue makes it difficult to say with real certainty whether single or MFI strategies are superior (e.g. [ 21 , 27 ]). Taking all the systematic reviews together we may conclude that MFIs appear to be more likely to generate positive results than single interventions (e.g. [ 34 , 45 ]) though other reviews should make us cautious (e.g. [ 32 , 43 ]).

While multi-faceted interventions still seem to be more effective than single-strategy interventions, there were important distinctions between how the results of reviews of MFIs are interpreted in this review as compared to the previous reviews [ 8 , 9 ], reflecting greater nuance and debate in the literature. This was particularly noticeable where the effectiveness of MFIs was compared to single strategies, reflecting developments widely discussed in previous studies [ 10 ]. We found that most systematic reviews are bounded by their clinical, professional, spatial, system, or setting criteria and often seek to draw out implications for the implementation of evidence in their areas of specific interest (such as nursing or acute care). Frequently this means combining all relevant studies to explore the respective foci of each systematic review. Therefore, most reviews we categorised as MFIs actually include highly variable numbers and combinations of intervention strategies and highly heterogeneous original study designs. This makes statistical analyses of the type used by Squires et al. [ 10 ] on the three reviews in their paper not possible. Further, it also makes extrapolating findings and commenting on broad themes complex and difficult. This may suggest that future research should shift its focus from merely examining ‘what works’ to ‘what works where and what works for whom’ — perhaps pointing to the value of realist approaches to these complex review topics [ 48 , 49 ] and other more theory-informed approaches [ 50 ].

Some reviews have a relatively small number of studies (i.e. fewer than 10) and the authors are often understandably reluctant to engage with wider debates about the implications of their findings. Other larger studies do engage in deeper discussions about internal comparisons of findings across included studies and also contextualise these in wider debates. Some of the most informative studies (e.g. [ 35 , 40 ]) move beyond EPOC categories and contextualise MFIs within wider systems thinking and implementation theory. This distinction between MFIs and single interventions can actually be very useful as it offers lessons about the contexts in which individual interventions might have bounded effectiveness (i.e. educational interventions for individual change). Taken as a whole, this may also then help in terms of how and when to conjoin single interventions into effective MFIs.

In the two previous reviews, a consistent finding was that MFIs were more effective than single interventions [ 8 , 9 ]. However, like Squires et al. [ 10 ] this overview is more equivocal on this important issue. There are four points which may help account for the differences in findings in this regard. Firstly, the diversity of the systematic reviews in terms of clinical topic or setting is an important factor. Secondly, there is heterogeneity of the studies within the included systematic reviews themselves. Thirdly, there is a lack of consistency with regards to the definition and strategies included within of MFIs. Finally, there are epistemological differences across the papers and the reviews. This means that the results that are presented depend on the methods used to measure, report, and synthesise them. For instance, some reviews highlight that education strategies can be useful to improve provider understanding — but without wider organisational or system-level change, they may struggle to deliver sustained transformation [ 19 , 44 ].

It is also worth highlighting the importance of the theory of change underlying the different interventions. Where authors of the systematic reviews draw on theory, there is space to discuss/explain findings. We note a distinction between theoretical and atheoretical systematic review discussion sections. Atheoretical reviews tend to present acontextual findings (for instance, one study found very positive results for one intervention, and this gets highlighted in the abstract) whilst theoretically informed reviews attempt to contextualise and explain patterns within the included studies. Theory-informed systematic reviews seem more likely to offer more profound and useful insights (see [ 19 , 35 , 40 , 43 , 45 ]). We find that the most insightful systematic reviews of MFIs engage in theoretical generalisation — they attempt to go beyond the data of individual studies and discuss the wider implications of the findings of the studies within their reviews drawing on implementation theory. At the same time, they highlight the active role of context and the wider relational and system-wide issues linked to implementation. It is these types of investigations that can help providers further develop evidence-based practice.

This overview has identified a small, but insightful set of papers that interrogate and help theorise why, how, for whom, and in which circumstances it might be the case that MFIs are superior (see [ 19 , 35 , 40 ] once more). At the level of this overview — and in most of the systematic reviews included — it appears to be the case that MFIs struggle with the question of attribution. In addition, there are other important elements that are often unmeasured, or unreported (e.g. costs of the intervention — see [ 40 ]). Finally, the stronger systematic reviews [ 19 , 35 , 40 , 43 , 45 ] engage with systems issues, human agency and context [ 18 ] in a way that was not evident in the systematic reviews identified in the previous reviews [ 8 , 9 ]. The earlier reviews lacked any theory of change that might explain why MFIs might be more effective than single ones — whereas now some systematic reviews do this, which enables them to conclude that sometimes single interventions can still be more effective.

As Nilsen et al. ([ 6 ] p. 7) note ‘Study findings concerning the effectiveness of various approaches are continuously synthesized and assembled in systematic reviews’. We may have gone as far as we can in understanding the implementation of evidence through systematic reviews of single and multi-faceted interventions and the next step would be to conduct more research exploring the complex and situated nature of evidence used in clinical practice and by particular professional groups. This would further build on the nuanced discussion and conclusion sections in a subset of the papers we reviewed. This might also support the field to move away from isolating individual implementation strategies [ 6 ] to explore the complex processes involving a range of actors with differing capacities [ 51 ] working in diverse organisational cultures. Taxonomies of implementation strategies do not fully account for the complex process of implementation, which involves a range of different actors with different capacities and skills across multiple system levels. There is plenty of work to build on, particularly in the social sciences, which currently sits at the margins of debates about evidence implementation (see for example, Normalisation Process Theory [ 52 ]).

There are several changes that we have identified in this overview of systematic reviews in comparison to the review we published in 2011 [ 8 ]. A consistent and welcome finding is that the overall quality of the systematic reviews themselves appears to have improved between the two reviews, although this is not reflected upon in the papers. This is exhibited through better, clearer reporting mechanisms in relation to the mechanics of the reviews, alongside a greater attention to, and deeper description of, how potential biases in included papers are discussed. Additionally, there is an increased, but still limited, inclusion of original studies conducted in low- and middle-income countries as opposed to just high-income countries. Importantly, we found that many of these systematic reviews are attuned to, and comment upon the contextual distinctions of pursuing evidence-informed interventions in health care settings in different economic settings. Furthermore, systematic reviews included in this updated article cover a wider set of clinical specialities (both within and beyond hospital settings) and have a focus on a wider set of healthcare professions — discussing both similarities, differences and inter-professional challenges faced therein, compared to the earlier reviews. These wider ranges of studies highlight that a particular intervention or group of interventions may work well for one professional group but be ineffective for another. This diversity of study settings allows us to consider the important role context (in its many forms) plays on implementing evidence into practice. Examining the complex and varied context of health care will help us address what Nilsen et al. ([ 6 ] p. 1) described as, ‘society’s health problems [that] require research-based knowledge acted on by healthcare practitioners together with implementation of political measures from governmental agencies’. This will help us shift implementation science to move, ‘beyond a success or failure perspective towards improved analysis of variables that could explain the impact of the implementation process’ ([ 6 ] p. 2).

This review brings together 32 papers considering individual and multi-faceted interventions designed to support the use of evidence in clinical practice. The majority of reviews report strategies achieving small impacts (normally on processes of care). There is much less evidence that these strategies have shifted patient outcomes. Combined with the two previous reviews, 86 systematic reviews of strategies to increase the implementation of research into clinical practice have been conducted. As a whole, this substantial body of knowledge struggles to tell us more about the use of individual and MFIs than: ‘it depends’. To really move forwards in addressing the gap between research evidence and practice, we may need to shift the emphasis away from isolating individual and multi-faceted interventions to better understanding and building more situated, relational and organisational capability to support the use of research in clinical practice. This will involve drawing on a wider range of perspectives, especially from the social, economic, political and behavioural sciences in primary studies and diversifying the types of synthesis undertaken to include approaches such as realist synthesis which facilitate exploration of the context in which strategies are employed. Harvey et al. [ 53 ] suggest that when context is likely to be critical to implementation success there are a range of primary research approaches (participatory research, realist evaluation, developmental evaluation, ethnography, quality/ rapid cycle improvement) that are likely to be appropriate and insightful. While these approaches often form part of implementation studies in the form of process evaluations, they are usually relatively small scale in relation to implementation research as a whole. As a result, the findings often do not make it into the subsequent systematic reviews. This review provides further evidence that we need to bring qualitative approaches in from the periphery to play a central role in many implementation studies and subsequent evidence syntheses. It would be helpful for systematic reviews, at the very least, to include more detail about the interventions and their implementation in terms of how and why they worked.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Before and after study

Controlled clinical trial

Effective Practice and Organisation of Care

High-income countries

Information and Communications Technology

Interrupted time series

Knowledge translation

Low- and middle-income countries

Randomised controlled trial

Grol R, Grimshaw J. From best evidence to best practice: effective implementation of change in patients’ care. Lancet. 2003;362:1225–30. https://doi.org/10.1016/S0140-6736(03)14546-1 .

Article   PubMed   Google Scholar  

Green LA, Seifert CM. Translation of research into practice: why we can’t “just do it.” J Am Board Fam Pract. 2005;18:541–5. https://doi.org/10.3122/jabfm.18.6.541 .

Eccles MP, Mittman BS. Welcome to Implementation Science. Implement Sci. 2006;1:1–3. https://doi.org/10.1186/1748-5908-1-1 .

Article   PubMed Central   Google Scholar  

Powell BJ, Waltz TJ, Chinman MJ, Damschroder LJ, Smith JL, Matthieu MM, et al. A refined compilation of implementation strategies: results from the Expert Recommendations for Implementing Change (ERIC) project. Implement Sci. 2015;10:2–14. https://doi.org/10.1186/s13012-015-0209-1 .

Article   Google Scholar  

Waltz TJ, Powell BJ, Matthieu MM, Damschroder LJ, et al. Use of concept mapping to characterize relationships among implementation strategies and assess their feasibility and importance: results from the Expert Recommendations for Implementing Change (ERIC) study. Implement Sci. 2015;10:1–8. https://doi.org/10.1186/s13012-015-0295-0 .

Nilsen P, Ståhl C, Roback K, et al. Never the twain shall meet? - a comparison of implementation science and policy implementation research. Implementation Sci. 2013;8:2–12. https://doi.org/10.1186/1748-5908-8-63 .

Rycroft-Malone J, Seers K, Eldh AC, et al. A realist process evaluation within the Facilitating Implementation of Research Evidence (FIRE) cluster randomised controlled international trial: an exemplar. Implementation Sci. 2018;13:1–15. https://doi.org/10.1186/s13012-018-0811-0 .

Boaz A, Baeza J, Fraser A, European Implementation Score Collaborative Group (EIS). Effective implementation of research into practice: an overview of systematic reviews of the health literature. BMC Res Notes. 2011;4:212. https://doi.org/10.1186/1756-0500-4-212 .

Article   PubMed   PubMed Central   Google Scholar  

Grimshaw JM, Shirran L, Thomas R, Mowatt G, Fraser C, Bero L, et al. Changing provider behavior – an overview of systematic reviews of interventions. Med Care. 2001;39 8Suppl 2:II2–45.

Google Scholar  

Squires JE, Sullivan K, Eccles MP, et al. Are multifaceted interventions more effective than single-component interventions in changing health-care professionals’ behaviours? An overview of systematic reviews. Implement Sci. 2014;9:1–22. https://doi.org/10.1186/s13012-014-0152-6 .

Salvador-Oliván JA, Marco-Cuenca G, Arquero-Avilés R. Development of an efficient search filter to retrieve systematic reviews from PubMed. J Med Libr Assoc. 2021;109:561–74. https://doi.org/10.5195/jmla.2021.1223 .

Thomas JM. Diffusion of innovation in systematic review methodology: why is study selection not yet assisted by automation? OA Evid Based Med. 2013;1:1–6.

Effective Practice and Organisation of Care (EPOC). The EPOC taxonomy of health systems interventions. EPOC Resources for review authors. Oslo: Norwegian Knowledge Centre for the Health Services; 2016. epoc.cochrane.org/epoc-taxonomy . Accessed 9 Oct 2023.

Jamal A, McKenzie K, Clark M. The impact of health information technology on the quality of medical and health care: a systematic review. Health Inf Manag. 2009;38:26–37. https://doi.org/10.1177/183335830903800305 .

Menon A, Korner-Bitensky N, Kastner M, et al. Strategies for rehabilitation professionals to move evidence-based knowledge into practice: a systematic review. J Rehabil Med. 2009;41:1024–32. https://doi.org/10.2340/16501977-0451 .

Oxman AD, Guyatt GH. Validation of an index of the quality of review articles. J Clin Epidemiol. 1991;44:1271–8. https://doi.org/10.1016/0895-4356(91)90160-b .

Article   CAS   PubMed   Google Scholar  

Francke AL, Smit MC, de Veer AJ, et al. Factors influencing the implementation of clinical guidelines for health care professionals: a systematic meta-review. BMC Med Inform Decis Mak. 2008;8:1–11. https://doi.org/10.1186/1472-6947-8-38 .

Jones CA, Roop SC, Pohar SL, et al. Translating knowledge in rehabilitation: systematic review. Phys Ther. 2015;95:663–77. https://doi.org/10.2522/ptj.20130512 .

Scott D, Albrecht L, O’Leary K, Ball GDC, et al. Systematic review of knowledge translation strategies in the allied health professions. Implement Sci. 2012;7:1–17. https://doi.org/10.1186/1748-5908-7-70 .

Wu Y, Brettle A, Zhou C, Ou J, et al. Do educational interventions aimed at nurses to support the implementation of evidence-based practice improve patient outcomes? A systematic review. Nurse Educ Today. 2018;70:109–14. https://doi.org/10.1016/j.nedt.2018.08.026 .

Yost J, Ganann R, Thompson D, Aloweni F, et al. The effectiveness of knowledge translation interventions for promoting evidence-informed decision-making among nurses in tertiary care: a systematic review and meta-analysis. Implement Sci. 2015;10:1–15. https://doi.org/10.1186/s13012-015-0286-1 .

Grudniewicz A, Kealy R, Rodseth RN, Hamid J, et al. What is the effectiveness of printed educational materials on primary care physician knowledge, behaviour, and patient outcomes: a systematic review and meta-analyses. Implement Sci. 2015;10:2–12. https://doi.org/10.1186/s13012-015-0347-5 .

Koota E, Kääriäinen M, Melender HL. Educational interventions promoting evidence-based practice among emergency nurses: a systematic review. Int Emerg Nurs. 2018;41:51–8. https://doi.org/10.1016/j.ienj.2018.06.004 .

Flodgren G, O’Brien MA, Parmelli E, et al. Local opinion leaders: effects on professional practice and healthcare outcomes. Cochrane Database Syst Rev. 2019. https://doi.org/10.1002/14651858.CD000125.pub5 .

Arditi C, Rège-Walther M, Durieux P, et al. Computer-generated reminders delivered on paper to healthcare professionals: effects on professional practice and healthcare outcomes. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.CD001175.pub4 .

Pantoja T, Grimshaw JM, Colomer N, et al. Manually-generated reminders delivered on paper: effects on professional practice and patient outcomes. Cochrane Database Syst Rev. 2019. https://doi.org/10.1002/14651858.CD001174.pub4 .

De Angelis G, Davies B, King J, McEwan J, et al. Information and communication technologies for the dissemination of clinical practice guidelines to health professionals: a systematic review. JMIR Med Educ. 2016;2:e16. https://doi.org/10.2196/mededu.6288 .

Brown A, Barnes C, Byaruhanga J, McLaughlin M, et al. Effectiveness of technology-enabled knowledge translation strategies in improving the use of research in public health: systematic review. J Med Internet Res. 2020;22:e17274. https://doi.org/10.2196/17274 .

Sykes MJ, McAnuff J, Kolehmainen N. When is audit and feedback effective in dementia care? A systematic review. Int J Nurs Stud. 2018;79:27–35. https://doi.org/10.1016/j.ijnurstu.2017.10.013 .

Bhatt NR, Czarniecki SW, Borgmann H, et al. A systematic review of the use of social media for dissemination of clinical practice guidelines. Eur Urol Focus. 2021;7:1195–204. https://doi.org/10.1016/j.euf.2020.10.008 .

Yamada J, Shorkey A, Barwick M, Widger K, et al. The effectiveness of toolkits as knowledge translation strategies for integrating evidence into clinical care: a systematic review. BMJ Open. 2015;5:e006808. https://doi.org/10.1136/bmjopen-2014-006808 .

Afari-Asiedu S, Abdulai MA, Tostmann A, et al. Interventions to improve dispensing of antibiotics at the community level in low and middle income countries: a systematic review. J Glob Antimicrob Resist. 2022;29:259–74. https://doi.org/10.1016/j.jgar.2022.03.009 .

Boonacker CW, Hoes AW, Dikhoff MJ, Schilder AG, et al. Interventions in health care professionals to improve treatment in children with upper respiratory tract infections. Int J Pediatr Otorhinolaryngol. 2010;74:1113–21. https://doi.org/10.1016/j.ijporl.2010.07.008 .

Al Zoubi FM, Menon A, Mayo NE, et al. The effectiveness of interventions designed to increase the uptake of clinical practice guidelines and best practices among musculoskeletal professionals: a systematic review. BMC Health Serv Res. 2018;18:2–11. https://doi.org/10.1186/s12913-018-3253-0 .

Ariyo P, Zayed B, Riese V, Anton B, et al. Implementation strategies to reduce surgical site infections: a systematic review. Infect Control Hosp Epidemiol. 2019;3:287–300. https://doi.org/10.1017/ice.2018.355 .

Borgert MJ, Goossens A, Dongelmans DA. What are effective strategies for the implementation of care bundles on ICUs: a systematic review. Implement Sci. 2015;10:1–11. https://doi.org/10.1186/s13012-015-0306-1 .

Cahill LS, Carey LM, Lannin NA, et al. Implementation interventions to promote the uptake of evidence-based practices in stroke rehabilitation. Cochrane Database Syst Rev. 2020. https://doi.org/10.1002/14651858.CD012575.pub2 .

Pedersen ER, Rubenstein L, Kandrack R, Danz M, et al. Elusive search for effective provider interventions: a systematic review of provider interventions to increase adherence to evidence-based treatment for depression. Implement Sci. 2018;13:1–30. https://doi.org/10.1186/s13012-018-0788-8 .

Jenkins HJ, Hancock MJ, French SD, Maher CG, et al. Effectiveness of interventions designed to reduce the use of imaging for low-back pain: a systematic review. CMAJ. 2015;187:401–8. https://doi.org/10.1503/cmaj.141183 .

Bennett S, Laver K, MacAndrew M, Beattie E, et al. Implementation of evidence-based, non-pharmacological interventions addressing behavior and psychological symptoms of dementia: a systematic review focused on implementation strategies. Int Psychogeriatr. 2021;33:947–75. https://doi.org/10.1017/S1041610220001702 .

Noonan VK, Wolfe DL, Thorogood NP, et al. Knowledge translation and implementation in spinal cord injury: a systematic review. Spinal Cord. 2014;52:578–87. https://doi.org/10.1038/sc.2014.62 .

Albrecht L, Archibald M, Snelgrove-Clarke E, et al. Systematic review of knowledge translation strategies to promote research uptake in child health settings. J Pediatr Nurs. 2016;31:235–54. https://doi.org/10.1016/j.pedn.2015.12.002 .

Campbell A, Louie-Poon S, Slater L, et al. Knowledge translation strategies used by healthcare professionals in child health settings: an updated systematic review. J Pediatr Nurs. 2019;47:114–20. https://doi.org/10.1016/j.pedn.2019.04.026 .

Bird ML, Miller T, Connell LA, et al. Moving stroke rehabilitation evidence into practice: a systematic review of randomized controlled trials. Clin Rehabil. 2019;33:1586–95. https://doi.org/10.1177/0269215519847253 .

Goorts K, Dizon J, Milanese S. The effectiveness of implementation strategies for promoting evidence informed interventions in allied healthcare: a systematic review. BMC Health Serv Res. 2021;21:1–11. https://doi.org/10.1186/s12913-021-06190-0 .

Zadro JR, O’Keeffe M, Allison JL, Lembke KA, et al. Effectiveness of implementation strategies to improve adherence of physical therapist treatment choices to clinical practice guidelines for musculoskeletal conditions: systematic review. Phys Ther. 2020;100:1516–41. https://doi.org/10.1093/ptj/pzaa101 .

Van der Veer SN, Jager KJ, Nache AM, et al. Translating knowledge on best practice into improving quality of RRT care: a systematic review of implementation strategies. Kidney Int. 2011;80:1021–34. https://doi.org/10.1038/ki.2011.222 .

Pawson R, Greenhalgh T, Harvey G, et al. Realist review–a new method of systematic review designed for complex policy interventions. J Health Serv Res Policy. 2005;10Suppl 1:21–34. https://doi.org/10.1258/1355819054308530 .

Rycroft-Malone J, McCormack B, Hutchinson AM, et al. Realist synthesis: illustrating the method for implementation research. Implementation Sci. 2012;7:1–10. https://doi.org/10.1186/1748-5908-7-33 .

Johnson MJ, May CR. Promoting professional behaviour change in healthcare: what interventions work, and why? A theory-led overview of systematic reviews. BMJ Open. 2015;5:e008592. https://doi.org/10.1136/bmjopen-2015-008592 .

Metz A, Jensen T, Farley A, Boaz A, et al. Is implementation research out of step with implementation practice? Pathways to effective implementation support over the last decade. Implement Res Pract. 2022;3:1–11. https://doi.org/10.1177/26334895221105585 .

May CR, Finch TL, Cornford J, Exley C, et al. Integrating telecare for chronic disease management in the community: What needs to be done? BMC Health Serv Res. 2011;11:1–11. https://doi.org/10.1186/1472-6963-11-131 .

Harvey G, Rycroft-Malone J, Seers K, Wilson P, et al. Connecting the science and practice of implementation – applying the lens of context to inform study design in implementation research. Front Health Serv. 2023;3:1–15. https://doi.org/10.3389/frhs.2023.1162762 .

Download references

Acknowledgements

The authors would like to thank Professor Kathryn Oliver for her support in the planning the review, Professor Steve Hanney for reading and commenting on the final manuscript and the staff at LSHTM library for their support in planning and conducting the literature search.

This study was supported by LSHTM’s Research England QR strategic priorities funding allocation and the National Institute for Health and Care Research (NIHR) Applied Research Collaboration South London (NIHR ARC South London) at King’s College Hospital NHS Foundation Trust. Grant number NIHR200152. The views expressed are those of the author(s) and not necessarily those of the NIHR, the Department of Health and Social Care or Research England.

Author information

Authors and affiliations.

Health and Social Care Workforce Research Unit, The Policy Institute, King’s College London, Virginia Woolf Building, 22 Kingsway, London, WC2B 6LE, UK

Annette Boaz

King’s Business School, King’s College London, 30 Aldwych, London, WC2B 4BG, UK

Juan Baeza & Alec Fraser

Federal University of Santa Catarina (UFSC), Campus Universitário Reitor João Davi Ferreira Lima, Florianópolis, SC, 88.040-900, Brazil

Erik Persson

You can also search for this author in PubMed   Google Scholar

Contributions

AB led the conceptual development and structure of the manuscript. EP conducted the searches and data extraction. All authors contributed to screening and quality appraisal. EP and AF wrote the first draft of the methods section. AB, JB and AF performed result synthesis and contributed to the analyses. AB wrote the first draft of the manuscript and incorporated feedback and revisions from all other authors. All authors revised and approved the final manuscript.

Corresponding author

Correspondence to Annette Boaz .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1: appendix a., additional file 2: appendix b., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Boaz, A., Baeza, J., Fraser, A. et al. ‘It depends’: what 86 systematic reviews tell us about what strategies to use to support the use of research in clinical practice. Implementation Sci 19 , 15 (2024). https://doi.org/10.1186/s13012-024-01337-z

Download citation

Received : 01 November 2023

Accepted : 05 January 2024

Published : 19 February 2024

DOI : https://doi.org/10.1186/s13012-024-01337-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Implementation
  • Interventions
  • Clinical practice
  • Research evidence
  • Multi-faceted

Implementation Science

ISSN: 1748-5908

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

how to include a hypothesis in a research paper

IMAGES

  1. How to write a hypothesis

    how to include a hypothesis in a research paper

  2. 10 Proven Steps: How to Find the Hypothesis in a Research Article

    how to include a hypothesis in a research paper

  3. How to Write a Hypothesis

    how to include a hypothesis in a research paper

  4. How to Write a Hypothesis

    how to include a hypothesis in a research paper

  5. Research Hypothesis: Definition, Types, Examples and Quick Tips

    how to include a hypothesis in a research paper

  6. How to Write a Hypothesis in 12 Steps 2023

    how to include a hypothesis in a research paper

VIDEO

  1. M&DRTW: Conceptualising Research- Formulating Research problems/ research questions/hypothesis

  2. 1.5. Hypothesis statement

  3. variables || Hypothesis|| Population||Sample||UGCNET|| Paper-2 (Education)

  4. Types of Hypothesis|English| #researchpapers #hypothesis

  5. Choosing a Research Question: Developing a Hypothesis and Objectives Part 3

  6. Types of hypothesis

COMMENTS

  1. How to Write a Strong Hypothesis

    Table of contents What is a hypothesis? Developing a hypothesis (with example) Hypothesis examples Other interesting articles Frequently asked questions about writing hypotheses What is a hypothesis? A hypothesis states your predictions about what your research will find.

  2. How to Write a Hypothesis in 6 Steps, With Examples

    1 Simple hypothesis A simple hypothesis suggests only the relationship between two variables: one independent and one dependent. Examples: If you stay up late, then you feel tired the next day. Turning off your phone makes it charge faster. 2 Complex hypothesis

  3. Hypothesis Examples: How to Write a Great Research Hypothesis

    The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another.

  4. What is and How to Write a Good Hypothesis in Research?

    4 minute read 258K views Table of Contents What is a Hypothesis in Research? Research Question vs Hypothesis How to Write Hypothesis in Research Research Hypothesis Example One of the most important aspects of conducting research is constructing a strong hypothesis. But what makes a hypothesis in research effective?

  5. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Table of Contents Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

  6. How to Write a Strong Hypothesis

    Try for free Developing a hypothesis (with example) Step 1: Ask a question Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question Do students who attend more lectures get better exam results?

  7. How to Write a Hypothesis

    Step 8: Test your Hypothesis. Design an experiment or conduct observations to test your hypothesis. Example: Grow three sets of plants: one set exposed to 2 hours of sunlight daily, another exposed to 4 hours, and a third exposed to 8 hours. Measure and compare their growth after a set period.

  8. What is a Research Hypothesis and How to Write a Hypothesis

    Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures). What is a Research Hypothesis? Research hypothesis is a statement that introduces a research question and proposes an expected result.

  9. How to Write a Hypothesis 101: A Step-by-Step Guide

    Table of Contents What is a Hypothesis? A hypothesis is a crucial starting point in scientific research. It is an educated guess about the relationship between two or more variables. In other words, a hypothesis acts as a foundation for a researcher to build their study. Here are some examples of well-crafted hypotheses:

  10. A Practical Guide to Writing Quantitative and Qualitative Research

    The answer is written in length in the discussion section of the paper. Thus, the research question ... This statement is based on background research and current knowledge.8,9 The research hypothesis makes a ... hypotheses predict the expected relationships among variables.15 Relationships among variables that can be predicted include 1 ...

  11. How to Write a Research Hypothesis

    Research hypothesis checklist. Once you've written a possible hypothesis, make sure it checks the following boxes: It must be testable: You need a means to prove your hypothesis. If you can't test it, it's not a hypothesis. It must include a dependent and independent variable: At least one independent variable ( cause) and one dependent ...

  12. Scientific Hypotheses: Writing, Promoting, and Predicting Implications

    What they need at the start of their research is to formulate a scientific hypothesis that revisits conventional theories, real-world processes, and related evidence to propose new studies and test ideas in an ethical way. 3 Such a hypothesis can be of most benefit if published in an ethical journal with wide visibility and exposure to relevant ...

  13. Formulating Strong Hypotheses

    Formulating Strong Hypotheses. Before you write your research hypothesis, make sure to do some reading in your area of interest; good resources will include scholarly papers, articles, books, and other academic research. Because your research hypothesis will be a specific, testable prediction about what you expect to happen in a study, you will ...

  14. PDF 1. Formulation of Research Hypothesis with student samples

    1. Formulation of Research Hypothesis with student samples RESEARCH HYPOTHESIS A research hypothesis is a statement of expectation or prediction that will be tested by research. Before formulating your research hypothesis, read about the topic of interest to you.

  15. How to Write a Hypothesis for a Research Paper + Examples

    Grounded in existing knowledge: A good hypothesis in a research paper is based on existing theories, concepts, or empirical evidence. It demonstrates a solid understanding of the relevant literature and builds upon prior knowledge in the field. Falsifiable: It can be potentially proven false.

  16. Writing an Introduction for a Scientific Paper

    If you have written your biological rationale, your reader should see your hypothesis in your introduction section and say to themselves, "Of course, this hypothesis seems very logical based on the rationale presented."

  17. Hypothesis Testing

    Step 5: Present your findings. The results of hypothesis testing will be presented in the results and discussion sections of your research paper, dissertation or thesis.. In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p-value).

  18. Introduction: Hypothesis/Thesis

    Discussion/Conclusions References Hypothesis or Thesis The first few paragraphs of a journal article serve to introduce the topic, to provide the author's hypothesis or thesis, and to indicate why the research was done.

  19. Writing a Research Paper Introduction

    Step 1: Introduce your topic Step 2: Describe the background Step 3: Establish your research problem Step 4: Specify your objective (s) Step 5: Map out your paper Research paper introduction examples Frequently asked questions about the research paper introduction Step 1: Introduce your topic

  20. How to Write a Good Hypothesis in a Research Paper

    Guides Samples Tips Topics What is a Hypothesis in a research paper? Every research has many parts, but its vital part is the proper hypothesis construction. A hypothesis represents a question, which includes an expected or predicted research result. When there's no hypothesis, the base for an experiment or research is missing.

  21. Research Hypothesis In Psychology: Types, & Examples

    Examples. A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

  22. How to write multiple hypotheses?

    Popular answers (1) Paul Hafen Indiana University Columbus In my experience stating null and alternate hypotheses does not extend far outside of the classroom. The idea is to state your alternate...

  23. Null & Alternative Hypotheses

    A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation ("x affects y because …"). A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses.

  24. 'It depends': what 86 systematic reviews tell us about what strategies

    To identify potentially relevant peer-reviewed research papers, we developed a comprehensive systematic literature search strategy based on the terms used in the Grimshaw et al. and Boaz, Baeza and Fraser overview articles. To ensure ... Each paper was rated as include, exclude or maybe. The full texts of 111 relevant papers were assessed ...

  25. Alabama embryo ruling: state Supreme Court rules frozen embryos are

    In a first-of-its-kind ruling, Alabama's Supreme Court said frozen embryos are children and those who destroy them can be held liable for wrongful death - a decision that puts back into ...